用户名: 密码: 验证码:
Modeling Vibrational Spectra of Ester Carbonyl Stretch in Water and DMSO Based on Molecular Dynamics Simulation
详细信息    查看全文
文摘
On the basis of molecular dynamics simulation, we model the ester carbonyl stretch FTIR signals of methyl acetate in D2O and DMSO. An ab initio map is constructed at the B3LYP/6-311++G** level to relate the carbonyl stretch frequency to the external electric field. Using this map, fluctuating Hamiltonian of the carbonyl stretch is constructed from the MD simulation trajectory. The IR spectra calculated based on this Hamiltonian are found to be in good agreement with the experiment. For methyl acetate in D2O, hydrogen bonding on alkoxy oxygen causes a blue shift of frequency, while that on carbonyl oxygen causes a red shift. Two peaks observed in FTIR signals originate from the balance of these two effects. Furthermore, in both D2O and DMSO solutions, correlations are found between the instantaneous electric field on C鈺怬 and the frequencies. Broader line width of the signal in D2O suggests a more inhomogeneous electric field distribution due to the complicated hydrogen-bonding environment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700