仁用杏优株花器官抗寒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以抗晚霜仁用杏(Prunus armeniaca×sibirica)优良单株花器官为试材,比较研究了36株抗晚霜仁用杏单株的抗寒性,并以筛选出的最抗寒优株的雌蕊为试材,探索一套适用于仁用杏雌蕊全细胞蛋白质组分离的双向电泳技术,为深入研究仁用杏抗寒机制、筛选抗寒品种以及进一步进行抗性育种奠定基础。研究结果如下:
     1.在28棵抗寒性‘优一’(Prunus armeniaca×sibirica’youyi’)优株中,‘优株25号’花瓣、雄蕊和雌蕊过冷却点、电导率及SOD的隶属函数平均值均为最大,分别为0.3334、0.3334、0.3027。各优株不同花器官的排名位次不同,而综合排名第一的‘优株25号’,其不同花器官排名位次均居第一。
     2.在8棵抗寒性‘龙王帽’(Prunus armeniaca×sibirica’longwangmao’)优株中,‘优株31号’花瓣、雄蕊和雌蕊过冷却点、电导率及SOD的隶属函数平均值值均为最大,分别为0.3334、0.3201、0.3334。各优株不同花器官的排名位次不同,‘优株31号’综合排名第一,其不同花器官排名位次均居第一。
     3.‘优株25号’、‘优株31号’的田间受冻情况均比同园对照轻。‘优株25号’花瓣和雌蕊的受冻率较其对照分别低9.4%、7.8%;‘优株31号’花瓣和雌蕊的受冻率较其对照分别低12.5%、4.9%;优株与对照间有显著差异(P<0.05)。优株受冻后的坐果率也均优于对照,且差异显著(P<0.05)。从花瓣与雌蕊的受冻率看,‘优株25号’和‘优株31号’的受冻率差异均不显著;从受冻后的坐果率看,‘优株25号’受冻后的坐果率高于‘优株31号’,差异显著(P<0.05)。
     4.优株各个花器官的过冷却点温度均低于同品种对照,差异显著(P<0.05),‘优株25号’更是达到了极显著水平(P<0.01),‘优株25号’花瓣、雄蕊、雌蕊的过冷却点温度均比同品种对照低0.9℃,‘优株31号’花瓣、雄蕊、雌蕊的过冷却点比同品种对照分别低0.5℃、0.7℃、0.7℃。‘优株25号’花瓣、雄蕊、雌蕊的过冷却点温度与‘优株31号’相比分别低了0.7℃、0.4℃、0.5℃,二者花瓣、雄蕊在P<0.01水平上有差异,而雌蕊在P<0.05水平上有差异。
     5.不同品种花器官的电解质外渗率、MDA含量随温度下降呈不断升高的趋势,可溶性蛋白及SOD酶活性呈先升高后降低的趋势。
     在不同温度下优株与对照花器官的电解质外渗率、MDA含量均表现为优株小于对照。两个优株花器官的电解质外渗率及MDA含量均表现为‘优株25号’<‘优株31号’。优株的半致死温度均低于对照,且‘优株25号’的半致死温度低于‘优株31号’。结果与电解质外渗率所得结果相符。
     同品种优株与对照花器官SOD酶活性不同,‘优株25号’花瓣、雄蕊、雌蕊SOD最大值分别出现在-6℃、-3℃、-3℃,对照‘优一’花瓣、雄蕊、雌蕊SOD最大值分别出现在-5℃、-3℃、-3℃。且除-6℃雌蕊的SOD值外,不同低温胁迫下‘优株25号’花器官的SOD值均高于对照。‘优株31号’花瓣、雄蕊、雌蕊SOD最大值分别出现在-5℃、-3℃、-3℃,对照‘龙王帽’花瓣、雄蕊、雌蕊SOD最大值分别出现在-4℃、-3℃、-3℃。除-4℃花瓣与-7℃雄蕊和雌蕊的SOD值外,不同低温胁迫下‘优株31号’花器官的SOD值均高于对照。不同优株花器官SOD酶活性不同,表现为‘优株25号’>‘优株31号’。
     ‘龙王帽’花瓣的可溶性蛋白含量最大值出现在-3℃,其他不同品种花瓣、雄蕊、雌蕊可溶性蛋白含量均在-4℃时达到最大值。低温胁迫下,优株花器官可溶性蛋白的含量均高于对照。‘优株31号’雄蕊、雌蕊在-6℃至-7℃之间的可溶性蛋白含量大于‘优株25号’,其余均表现为‘优株25号’>‘优株31号’。
     6.建立了适合仁用杏雌蕊蛋白质组学研究的双向电泳体系,即:用TCA/丙酮法与酚提取法相结合的方法提取雌蕊的蛋白质,用常温震荡裂解2h的方法溶解蛋白干粉,之后采用bradford法对提取的蛋白质进行定量,在此基础上,上样量在100ug,上样体积为370ul。第一向等电聚焦采用pH 5-8,17cm的线性IPG胶条进行蛋白质的分离,等电聚焦结束后,经含有DTT和碘乙酰胺的平衡缓冲液Ⅰ、Ⅱ各平衡15min。第二向SDS-PAGE凝胶电泳采用12%的凝胶浓度对蛋白质进行分离。用高分辨率的硝酸银染色,可获得分辨率和重复性均较好的凝胶图谱。
The test take the floral organs of anti-frost Kernel Apricot(Prunus armeniaca×sibirica) superior strains as test materials, studied cold hardiness of 36 superior strains of kernel apricot to frost hazard,and used the pistil of Kernel Apricot of selected superior strains of the most cold stress as the specimens,explore a set of two dimensional electropHoresis technology that applied to separate the whole-cell proteins of the pistil of Kernel Apricot, for further research mechanism of cold hardiness of Kernel apricot, filtrate cold resistant varieties and further lay the foundation for breeding. The results are as follows:
     1. In the 28 (Prunus armeniaca×sibirica’youyi’) 'youyi' superior strains to cold stress, average value of the subordinate function of the supercooling point、the electrolyte leakage、superoxide dismutase activity of the petal, stamen and pistil of'25'is 0.3334、0.3334、0.3027,the lagest one.Rank order of The superior strains about different floral organs is different , and not only comprehensive ranking of ' 25', but also the ranking of different floral organs is first.
     2 In the 8 'longwangmao' (Prunus armeniaca×sibirica’longwangmao’) superior strains to cold stress, average value of the subordinate function of the supercooling point、the electrolyte leakage、superoxide dismutase activity of the petal, stamen and pistil of '31' is 0.3334、0.3201、0.3334,the lagest one. Rank order of the superior strains about different floral organs is different , and not only comprehensive ranking of ' 31', but also the ranking of different floral organs is first.
     3. The freezing rate of ' 25'and' 31'in the field were lighter than the contrast . The freezing rate of petals and pistils of' 25'is lower than the contrast were 9.4%, 7.8%; the freezing rate of petals and pistils of ' 31' is lower than the contrast were 12.5%, 4.9%; there are significant differences between superior strains and contrast (P <0.05). Fruit set of superior strains after freeze injury was better than contrast, and the difference is significant (P <0.05). From the freezing rate of petals pistil of view, difference of the freezing rate of '25' and ' 31' were not significantly different; from the fruit setting rate of view after freeze injury, the fruit setting rate of '25'was taller than ' 31', the difference was significant (P <0.05).
     4. Supercooling point temperature of superior strains of various floral organs is lower than the contrast, the difference was significant (P <0.05), ' 25' reached significant level (P <0.01), supercooling point temperature of petal, stamen, pistil of '25 'is lower than the same varieties, is 0.9℃, the supercooling points temperature of petals, stamen, pistil of ' 31 'is lower than the same varieties ,were 0.5℃, 0.7℃, 0.7℃. supercooling point temperature of petals, stamen, pistil of '25' is lower than ' 31 ',is 0.7℃, 0.4℃, 0.5℃, there are differences at the P <0.01 level to the two of petals, stamens,and pistil is different at the P <0.05 level .
     5. With the temperature declining, electrolyte leakage, MDA content of different varieties of flower organs is continuance rising , soluble protein and SOD activity was first increased and then decreased.
     The electrolyte leakage、MDA content of superior strains of flower organs is lower than contrast under the different temperature。electrolyte leakage, MDA content of two superior strains of floral organs showed ' 25' <'" 31'. lethal temperatures of superior strains were lower than the contrastl. Results is accordance with the results of electrolyte leakage.
     SOD activity is different between the sperior strains and the contrast,maximum SOD valueof petal, stamen , pistil of '25' appeared at -6℃, -3℃, -3℃,maximum SOD activity of petal, stamen , pistil of contrast appeared at -5℃, -3℃, -3℃.In addition to the SOD value of the pistil with -6℃, under the different low temperature stress , the SOD value of floral organs of '25' were higher than contrast.maximum SOD valueof petal, stamen , pistil of '31' appeared at -5℃, -3℃, -3℃,maximum SOD activity of petal, stamen , pistil of contrast appeared at -4℃, -3℃, -3℃.In addition to the SOD value of the petalwith -4℃,and the stamen and pistil with-7℃, under the different low temperature stress ,the SOD value of floral organs of '31' were higher than contrast.SOD activity of diffrent superior strains floral organs is diffrent, showing '25'> '31'.
     Soluble protein content of petals of 'longwangmao' is maximum in -3℃, soluble protein content of the others reached maximum at -4℃. under the low temperature stress, soluble protein content of floral organ of superior strains were higher than contrast. soluble protein content of stamen, pistil of ' 31'from -6℃to -7℃is digger than '25', the rest showed ' 25'> '31'.
     3. Established a set of two dimensional electropHoresis technology that fit proteomics of the pistil of Kernel Apricot。Namely,using combined the TCA / acetone and pHenol extraction method to distill the pistil proteins,dissolve protein powder with lysis 2h at normal temperature shock method, followed by bradford method determine protein concentration, on this basis, the content of sample 100ug, the sample volume of 370ul. Subsequently, first,isoelectric focusing using pH 5-8,17 cm linear IPG strips for protein separation, after isoelectric focusing using balance bufferⅠ,Ⅱthat each contain DTT and iodoacetamide balance strips 15min. The second ,the SDS-PAGE, using 12% gel concentration , separate protein. The gel stained by silver contained, in the end,the gel map with preferably distinguishability and reproducibility was obtained.
引文
[1]何维勋,霜冻.农业百科全书二农业气象卷[M].北京:农业出版社,1986,272-274.
    [2]罗新书,薛炳烨,姚胜芯.关于杏研究进展的情况(二)—生物学及栽培技术研究进展.第三次全国李杏资源研究与利用研讨会论文[C].1989.
    [3] Palta J P,Jensen K G,Li P H.Cell membrane alterations following slow freez that election leakage ,injury and recovery.Plant Cold Hardiness and Freezing Stress[J].New York: Academic press,1982,2: 221-242.
    [4]张玲.大扁杏抗性生理特性研究[D].西北农林科技大学硕士学位论文,2003.
    [5]王明麻.林木育种学概论[M].北京:中国林业出版社,2001.
    [6]张明鹏,Rajasheker,利用悬浮培养进行葡萄细胞抗寒性筛选的研究[J].园艺学报,1992,19(2):135-139.
    [7]林定波,颜秋生,沈德绪,柑橘抗寒细胞变异体的获得及其抗性遗传稳定性的研究[J].植物学报,1999,41(2):136-141.
    [8]陈幸良.林木育种及其成果产业化研究[D].南京林业大学博士论文.2008.
    [9]王明麻.林木遗传育种学[M].北京:中国林业出版社,2001.
    [10]潘瑞炽,董愚得.植物生理学[M].北京:高等教育出版社,1999,322-328.
    [11]陈学森,李宪利,张艳敏等,杏种质资源评价及遗传育种研究进展[J].果树学报,2001,18,(3).
    [12]陈学森,沈洪波,张艳敏.杏及大樱桃花器官冻害调查[J].园艺学报,2001.28(4):373-376.
    [13]陈学森,束怀瑞,果树开花授粉生物学研究进展[J].山东农业大学学报,2000,31(3):345-348.
    [14] Lyons J.M.,J.K.Raison[J].Plant PHysio1,1970,45:386.
    [15]陈长兰,贾敬贤.梨种和品种抗寒性的测定[J].北方果树,1989,(3):12-14.
    [16]纪忠雄,柑橘抗寒性的生理生化指标[J].园艺学报,1983.10(4):239-244.
    [17] Shaoli Lu,Mark Rieger,cold acclimation of young kiwifruit vine under artificial hardening conditions[J].hortscience,1990,25(12):1628-1630.
    [18]杨向娜,魏安智,杨途熙,等.仁用杏3个生理指标与抗寒性的关系研究[J].西北林学院学报,2006,21(3):30-33.
    [19]张泽煌,黄碧琦.低温胁迫对茄子的伤害及茄子的抗寒机理[J].福建农业学报,2000,15(1): 40-42.
    [20]王淑杰,王家民,李亚东等,氧化酶活性与葡萄抗寒性关系的研究[J].吉林农业大学学报,1996,18 (2): 35-38.
    [21]王华等.低温胁迫对杏花SOD活性和膜脂过氧化的影响[J].果树科学,2000,17(3):197-201.
    [22] ScalabrellG,VitiR,CinelliF.Change in catalase activity and dormancy of apricot buds in response to chilling[J].Acta Horticulturae,1991,293:267-274.
    [23]黄永红,沈洪波,陈学森.杏树抗寒生理研究初报[J].山东农业大学学报,2005,36(2):191-195.
    [24]杨建民等.几个仁用杏品种抗寒性比较研究[J].中国农业科学,1999,32(1):46-50.
    [25]杨建民等.冰核细菌对杏花器官抗寒性的影响[J].园艺学报,2002,29(1):20-24.
    [26]姚盛蕊,争骧,简令成.桃花芽越冬过程中的多糖的积累和质壁分离动态与品种耐寒性的关系[J].果树科学,1991,8(1):13-18.
    [27]康国章,王正询,孙谷畴.植物的冷调节蛋白[J].植物学报,2002.19(2):39-246.
    [28] Hajela R K,liorvath D P,Gilmour S J,Thomashow M F,Molecular cloning and expression of cor (Cold-regulated)genes in Arabidopsis thaliana[J].Plant PHysiol.1990,93:1246-1252.
    [29]费云标,孙龙华,简令成等.沙冬青高活性抗冻蛋白的发现[J].植物学报,1994,36(8):649-650.
    [30]王颖.印糠(Azadirachta Indica A.)的冷驯化与抗冻蛋白的研究[D].西南农业大学学位论文.2006.
    [31]张党权,谭晓风等.胡萝卜抗冻蛋白的快速与高效纯化[J].中南林科院学报, 2005,4.
    [32] Charles A K,Arthur L DeV,Larry D O.Fish antifreeze protein and the recrystallization of ice[J]. Nature.1984,308:295-296.
    [33]皇甫海燕,官春云,郭宝顺等.蛋白质组学及植物蛋白质组学研究进展[J].作物研究.2006(5)577-581.
    [34] O'Farrell P H.High resolution two-dimensional gel electropHoresis of proteins [J].J Biol Chem, 1975,(10),250:4007-4021.
    [35]李肖芳.应用蛋白质组学方法研究盐角草的抗盐性-盐角草双向电泳体系的建立[D].中国科学院研究生院:中国科学院植物研究所,2006.
    [36] GEGENHEIMER P.Preparation of extracts from plants[J].Meth Enzymol,1990,182:174-193.
    [37] GRANIER F.Extraction of plant-proteins for two-dimensional electropHoresis[J].ElectropHoresis, 1988,9(11):712-718.
    [38] TSUGITA A,KAMO M.2-D electropHoresis of plant proteins[J].Methods in Molecular Biology, 1999,112:95-97.
    [39] Damerval C,Devieme D,Zivy M,et al.Technical improvements in two-dimensional electropHore -sis increase the level of genetic-variation detected in wheat-seedling proteins[J]. ElectropHorsis, 1986,7:52-54.
    [40] Carpentier S C.Witters E,laukens K.et al.Preparation of protein extracts from recalcitrant plant tissues:an evaluation of different methods for two-dimensional gel electropHoresis analysis[J]. Proteomics.2005.5:2497-2507.
    [41]郭尧君.蛋白质电泳试验技术[M].北京:科学出版社.2005.197-198.
    [42] Amme S,Matros A,Schlesier B.Proteome analysis of cold sress response in Arabidopsis thsliana using DIGE-technology[J].Journal of Experimental Botany,2006,57:1537-1546.
    [43] Lilley K S,Dupree P.Methods of quantitative proteomics and their application toplant organelle characterization[J].Journal of Experimental Botany,2006,57:1493-1499.
    [44] Candiano G,Bruschi M,Musante L,et al.Blue Silver:A very sensitive colloidal coomassie G-250 staining for proteome analysis[J].ElectropHoresis,2004,25:1327-1333.
    [45] Yan,J X,Harry,R A,Spibey,C,et al.PostelectropHoretic staining of proteins separated by two-dimensional gel electropHoresis using SYPRO dyes[J].ElectropHoresis,2000,21:3657-3665.
    [46] Appel R D.Interfacing and intergrating databases.In:Wilkins M R,ed.Proteme research:Newfrontier in funtional genomics[J].Voll,Berlin:Spring-verlag,1997.149-175.
    [47]汤乐民,丁斐.生物科学图像处理与分析[M].北京:科学出版社,2005.206-209.
    [48] Lemkin P F,Lipkin L E.GELLAB:A computer system for two-dimensional gel electropHoresis anslysis.IILMultiple two-dimensional gel analysis[J].Computer Biomedical Research,1981,14: 272-297.
    [49] Lemkin P F,Lipkin L E.Gellab:A Computer system for two-dimensional gel electropHoresis anslysis II pairing spots[J].Computer Biomedical Research,1981,14:35-380.
    [50]沈朋,范晓辉,曾真.基于图像特征和数学形态学的蛋白质组双向电泳分析法[J].中国科学B辑化学2005,35(1):44-50.
    [51]熊兴东,许丽艳,沈忠英等.双向凝胶电泳图像分析方法的建立[J].癌变·畸变·突变.2002, 14(3):139-143.
    [52] Kaczmarek,K Walczak,B.,de Jong,S.,etal.Matching 2D gel electropHoresis images[J].J Chem In f Comput Sci.2003,43:978-986.
    [53] Pandey,A.& M.Mann.2000.Proteomics to study genes and genomes[J].Nature,405:837-846.
    [54] Berndt,P.,U.Hobohm & H.Langen.1999.Reliable automatic protein identification from matrix -assisted.laser desorption/ionization mass spectrometric peptide fingerprints[J].Electrop hore -sis,20:3521-3526.
    [55] Pandey,A.& M. Mann.2000.Proteomics to study genes and genomes[J].Nature,405:837-846.
    [56] Shevchenko,A.,A.Loboda.A.Shevchnko,W.Ens & K G.Standing 2000.MALDI quadrupole time-of-flight mass spectrometry:a powerful tool for proteomic research[J].Analytical Chemistry. 72:2132-2141.
    [57] Wu Y,Lemkin P F,Upton K.A fast spot detection algorithm for 2-D electropHoresis analysis[J]. ElectropHoresis,1993,14:1341-1356.
    [58] Panek J,Vohradsky J.Point matching in the analysis of two-dimensional gel electropHerograms[J]. ElectropHoresis,1999,20:3483-3491.
    [59]曾嵘,夏其昌.蛋白质组[J].现代科学仪器,2000,5:5-9.
    [60] Ron D,Appel R D,Hoogland C,et al.Constructing a 2-D database for the world wide web.2-D proteome analysis protocols[J].In:Link A J,ed.Methos in molecular biology.Vol112,Totowa: Humana press,1999.411-416.
    [61]张加延.全国李与杏资源考察报告[J].中国果树,1990(4):29-34.
    [62]陈学森,李宪利,张艳敏等.杏种质资源评价及遗传育种研究进展[J].果树学报, 2001,18(3):178-181.
    [63]孟庆瑞,王文凤,梁隐泉等.杏品种花器官过冷却点及结冰点的研究[J].中国农业科学,2008,41(4):1128-1133.
    [64]孟庆瑞,徐秀英,杨建民等.杏花器官抗寒性初步研究[J].河北农业大学学报2006,29(3):22-25.
    [65]王华,等.低温对杏花及幼果的伤害和若干生理指标的影响[J].江苏农业学报,1999,15(4):237- 240.
    [66]缴丽莉,路丙社,白志英等.四种园林树木抗寒性的比较分析[J].园艺学报,2006,33(3):667-670.
    [67]高俊凤,主编.植物生理学试验技术[M].西安:世界图书出版公司,2000,1.
    [68]王宝山.生物自由基与植物膜伤害[J].植物生理学通讯,1988,24(2):12-16.
    [69]张继澍.植物生理学[M].西安:世界图书出版公司,1999:370-376.
    [70]石雪晖.低温胁迫对柑桔离体叶片质膜透性和MDA及VC含量的影响[J].湖南农业大学学报,1997,23(1):36-39.
    [71]沈漫,王明庥,黄敏仁.植物抗寒机理研究进展[J].植物学通报,1997,14(2):1-8.
    [72] Chen,H.H.,Li,PH.Potato cold acclimation.In Li PH,Sakai,A.,et al.:Plant cold hardness and freezing stress[M].New York:Academic Press,1982,(2):5-22.
    [73]魏安智.仁用杏抗寒机理研究与抗寒物质筛选[D].西北农林科技大学学位论文. 2006.
    [74]孟庆瑞.杏树抗寒性研究[D].河北农业大学学位论文.2002.
    [75]皇甫海燕,官春云,郭宝顺等.蛋白质组学及植物蛋白质组学研究进展[J].作物研究.2006(5)577-581.
    [76]乌云塔娜,张党权,谭晓风.蛋白质组学及其在植物研究中的应用[J].中南林学院学报.2005(4).115-119.
    [77]赖童飞.亚洲棉短纤维发育突变体蛋白质差异分析[D].中国农业科学院学位论文.2007.
    [78]申永锋.抗枣疯病相关蛋白的双向电泳分析[D].河北农业大学学位论文.2008.
    [79] Blackstock W P,Weir M P.Proteomics:quantitative and pHysical mapping of cellular proteins[J]. Trends of Biotechnology,1999,17:121-127.
    [80]王玉琪,彭新湘.适用于水稻叶片蛋白质组分析的双向电泳技术[J].植物生理与分子生物学学报,2006,32(2):252-256.
    [81]李肖芳,韩和平,王旭初,等.适用于盐生植物的双向电泳样品制备方法[J].生态学报,2006,26(6):1848-1853.
    [82]席景会,殷建文,岳琳,等.拟南芥全细胞蛋白质样品制备及其双向电泳条件的优化[J].吉林大学学报(理学版),2006,44(6):1011-1014.