基于气流扰动的茶园晚霜冻害防除机理及控制技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国茶叶种植面积与产量已稳居世界第一位,但是长江以南茶叶主产区连年遭受严重的倒春寒晚霜冻害,经济损失惨重,成为制约茶产业可持续健康发展的主要瓶颈之一。国内尚无机械化、自动化的茶园防霜技术与装备,传统的覆盖、灌水或烟熏等措施,不仅防霜效果差,还会污染环境。因此,开展茶园晚霜冻害防除机理及其自动控制技术的基础研究,开发适合我国国情的具有自主知识产权的茶园防霜机械,不仅可以提升茶园防霜技术水平,提高劳动生产率,而且对促进我国农业气象灾害调控技术发展,具有重要的理论价值和重大的实践意义。本论文在“茶园风扇防霜关键技术及其应用研究”等课题资助下,进行了从茶园晚霜冻害发生发展、近地小气候逆温特征、气流扰动防霜作用机理等基础研究,到气流扰动防霜控制策略,以及高架风机防霜装备及自动控制系统开发的集成研究。主要研究工作与结果如下:
     (1)茶树晚霜发生预测及其冻害程度识别研究
     在宏观时间尺度上,依据1979~2010年的历史气象资料,运用季节灾变灰理论,以危害最严重的早春初/末霜为对象,建立其预测模型。通过气象数据分析得到近32年来,晚霜发生的概率约96.67%,发生日期不稳定,且跨度很大。根据建立的灰色预测模型,预测了镇江地区今后若干年中指定日期上初霜发生和末霜发生的最近两个年份。在短时间尺度上,依据实时气象信息,以相对日落时间的气温和霜夜最低温为边界,建立潜在霜夜的最低温预测模型和气温经时变化模型。经验证,潜在霜夜最低温随着初始温度线性变化,初始时间选择在日落后1 h,模型方程的相关系数为0.86;霜夜的气温随时间变化的预测模型,符合下降型自然对数函数形式。以上模型为防霜控制提供预报和决策支持。
     对不同低温冻害处理的茶树叶片,获取其表面漫反射光谱信息,通过归一化+MAF+二阶微分的预处理方法后,采用PLS+ANN方法建立的预测模型最佳,其主成份数为11,回判均方根误差为0.1512,预测值与真实值之间的相关系数达到0.9950,平均相对误差最小为5.0725%。基于此模型,可快速准确识别正常叶片和最轻级别冻害叶片,为确定叶片发生冻害的临界低温,提供一种新的检测方法,从而为气流扰动防霜控制提供参数依据。
     (2)基于气流扰动的茶园晚霜冻害防除机理研究
     基于茶园定点试验测定的数据,分析了茶园小气候环境及逆温气象特征,研究晚霜条件下茶园近地空气层温度动态变化规律,从而揭示气流扰动防霜在不同阶段的作用机理。研究结果表明,茶园气流扰动防霜须涵盖逆温防霜和反逆温防霜两个阶段。在初春晴朗无风或少风的夜晚极易发生晚霜,此时气温发生分层的逆温变化,典型的逆温温度场分布梯度按方根函数变化,垂直地面上空9 m高处比茶树冠层位置温度高出约6-8℃。茶园中低洼处温度最低,霜冻害严重;单株茶树冠层气温的空间分布不均,西北侧冠层上方的温度最低。因此,利用风机等机械装备扰动茶园近地逆温层,将上方较暖空气强制对流吹向下方低温的茶树冠层,可提高其温度,从而防止或减轻茶树霜冻害。此为逆温阶段气流扰动防霜的机理。进一步的试验研究发现,日出前后逆温层逐渐消失(反逆温),近地上方气温开始略低于茶树冠层处,此时如果继续扰动气流,以缓解冠层叶片温度的快速上升,从而保护叶片组织免受应激损伤。这是本论文在国内外首次明确提出的反逆温阶段气流扰动防霜的机理。综合以上两阶段不同的防霜过程于一体,形成完备的气流扰动防霜机理,达到功效最大化。
     对气流扰动防霜作用过程的计算流体力学模拟结果表明:高架风机的作用范围为梨状对称分布,设定条件下,核心区域温升可达4℃以上,可有效防霜。
     (3)气流扰动防霜系统控制技术研究
     控制技术是气流扰动防霜的核心和关键。在分析国外现有防霜控制技术存在问题的基础上,结合茶树的耐冻性和气象逆温的特点,首次提出基于临界低温的逆温差控制策略,使系统节能运行。在逆温成霜阶段,以茶树开始发生冻害的临界低温为充分条件,以逆温强度为必要条件,控制系统的启动和关闭。从而避免了传统控制策略可能导致的误操作或反作用。在反逆温融霜阶段,以气温和时段为限制条件,控制系统停机延后运行,缓解霜冻融解过程,避免霜冻害进一步加剧。研制了自动控制系统的硬件和软件,并进行了测试。此外,基于AT89C52单片机和TC35i无线通讯模块,开发了茶园气象信息采集与无线发送装置,编制应用软件实现数据采集和短信操作等主要功能。该装置结构简单,操作方便,可实现可靠的天气信息实时采集和无线传送,为茶园小气候的监测和晚霜冻害预警及控制,提供了信息支持。
     (4)茶园气流扰动防霜试验研究与性能评价
     基于前几章所研究的气流扰动防霜机理与技术,自主设计和研制了茶园高架防霜风机。该装备采用简单结构、使用维护方便、无污染,特别适于丘陵山区茶果园使用。通过实验室和田间性能测试分析,对其控制的防霜效果进行研究,并与进口日本的防霜装备进行了比较。基于改进层次分析法的模糊综合评价结果表明,所开发的WT3000型高架风机防霜系统综合技术经济性最优,其额定功率3 kw,有效防霜面积约1000 m2。在辐射晚霜条件下,可提高茶树冠层温度约2.86℃;在有重霜冻的年份可提高茶叶产量约47.7%。其控制系统运行可靠稳定,比国外同类控制技术节能约20%。
     本研究以茶树晚霜冻害发生动态和气象逆温特征为实证,提出了气流扰动防霜机理及控制策略,研制了具有自主知识产权的高架风机防霜装备及其自动控制系统,并在实际生产中取得了良好的效果。这对于提高我国农业低温霜冻害的减灾、灭灾及调控技术水平,都具有重要的理论价值和实践意义。
Major tea growing areas in the south of the Yangtze River, China have been suffering from severe late spring frost damage in consecutive several years, even though both China's tea cultivated area and yield have firmly ranked the first in the world. The frost damage has resulted in sizable economic losses and unstable tea product supply, which is becoming one of the main bottlenecks to hold back the sustainable healthy development of tea industry. However, only conventional frost protection measures are available in China so far, such as covers, flood irrigation and smudge, which have disadvantages of low protection effectiveness, waste of time and labor or potential environmental pollution. Yet mechanized or automated equipment and technology have not been developed or put into use. Some foreign advanced frost protection methods are not always suitable to our national conditions, and moreover the technology blockade is extremely strict. Therefore, it is of great importance to conduct the fundamental research on the mechanism and control technology of late frost protection for tea plant, and to develop own technological system of frost protection with independent intellectual property and practical applicability, which not only improves the labour productivity, mechanization and automation of frost protection, but also promotes the development of control technology on China's agro-meteorological disasters. In this dissertation, perfect frost protection mechanism based on air disturbance was disclosed through the analysis and experimental study on the occurrence and development of frost damage and the feature of near-ground thermal inversion in tea farm. And then the technological system of frost protection base on air disturbance was established and simulated. The energy-saving and reliable control strategy of the system was made on the basis of biometeorology. Finally, the wind machine prototype was developed and tested through practical application in the field, and the overall evaluation of frost protection effect and comprehensive performance were conducted among several models of the wind machine. Major research work and findings are as follows.
     (1) Forecast of frost events and identification of freeze damage to tea plants
     Firstly, in macro-scale of time from 1979 to 2010, the historical weather data was applied to seasonal calamities grey prediction in order to establish and validate the forecast models of the first and last frost date, which are most serious damage to tea production. The occurrence probability of late frost is 96.67% for the past 32 years and the occurrences are unsteady with wide spans.Grey prediction model was established to forecast the first/last frost days in Zhenjiang, which would be the closest to now. Secondly, on a short-time scale weather observations were used to establish the minimum temperature model on potential frost nights, and then air temperature throughout the frost night was predicted based on the typical variation trend of temperature, which ranges within the minimum temperature and the sunset temperature. It is proved that the minimum temperature has a linear relation with the initial temperature and the best initial time is one hour after the sunset. The correlation coefficient of the linear wquation is 0.86. The frost night temperature changes as a descending curve of natural logarithm. The above models help provide frost warning and support the decision-making on frost control. Thirdly, diffuse reflectance spectra of tea leaves frozen at different low temperatures were collected to set up a calibration model for identifying the degree of freeze damage to tea plants. Consequently, the analytical method could be a potential way of determining critical damage temperature by comparing the normal and the slightest frozen leaves. Diffuse reflectance spectrum of the surface of tea leaves was collected after the sample leaves were frozen at different low temperatures. Then pre-processing of the spectra was conducted with the combination of normalization, moving average filtering and second-order differentiation. The best prediction model was established through the algorithm of partial least square combined with artificial neural network, with 7 principal components,0.1512 for RSMEC and 0.9950 for the correlation coefficient between the true and predicted values. The average relative error of the prediction model is the minimum at 5.0725%. The model could be used for rapid identification of normal leaves and the slightest frozen ones and produces a new method of determing the critical temperature, consequently provides parameters for frost protection control.
     (2) Mechanism of late frost protection for tea plant based on air disturbance The features of microclimate, especially thermal inversion in tea fields were discussed from the perspective of energy and meteorology. Under frost conditions thermal inversion experiments were conducted to reveal the variation characteristics of air temperature field near above the ground, and subsequently to explain different frost protection mechanisms based on air disturbance on different occasions.
     The test results indicate that frosts tend to be occurring during cloudless calm nights in early spring, when the air becomes vertically stratified with temperature increasing with height. The vertical distribution of temperature field near above ground changed as a quadratic nonlinear curve. The temperature at the height of 9 m was 6~8℃higher than that of canopy. And there was an obvious thermal inversion at the height of 6~8 m. The lowest temperature arose at the depression, where frost damage was the severest. For a individual tea plant the temperature was not uniform throughout the whole canopy, and on the top of the northwest canopy was the lowest temperature, which could be used as one of the frost control parameters. Therefore, frost damage to the tea plant can be avoided or reduced by convecting the thermal inversion layer with a fluid machinery (fan), which pushes the top warmer air downward to the canopy and mixes with the cold air to increase the canopy temperature. This is the frost protection mechanism for the thermal inversion stage. The thermal inversion was gradually disappearing around the sunrise, and air temperature aloft becomes lower than that of tea plant canopy, when tea leaves could not be damaged since their temperature rise is delayed if air disturbulance is made. This is the first time to come up with the frost protection mechanism for anticyclonic inversion. After sunrise the canopy temperature increased very fast, but the temperature on the east side of the row was higher than that on the west side.
     Computational fluid dynamics simulation of the frost protection was carried out to show that its coverage is pear-shaped and symmetric and major area is prevented from frost damage with remarkable temperature rise of 4℃.
     (3) Control technology of frost protection through air disturbance
     Control technology is the key to frost protection through air disturbance. The technological defect was found after the overall investigation on current situations of overseas frost protection control. The thermal inversion-driven control strategy based on critical temperature(short as TCSCT) was first put forward from the compound perspective of tea plant's hardiness and thermal inversion features. TCSCT makes the wind machine run with low energy consumption. During the thermal inversion, that the canopy temperature is less than the critical temperature is the sufficient condition, and that thermal inversion difference is higher than a certain threshold is the necessary condition control the sytem for start and stop, avoiding the possible misoperation or empty run. After the thermal inversion disappears and the frost thaws, air temperature and period of time were subject to the control of delaying the operation in order to mitigate the defrosting and prevent the further damage. The hardware and software were developed and tested. Meteorological Information acquisition and wireless transfer apparatus for tea farm were deloped based on AT89C52 and wireless communication module TC35i, and application was programmed to complete the data collection and wireless transfer. The apparatus has the simple structure, convenient maintanence and high reliability of realtime data acquisition and wireless transmission, which provides the information support for microclimate monitoring and early warning and control for late frost damage to the tea plant.
     (4) Frost protection test of developed wind machine and its performance evaluation
     The elevated frost protection wind machine was independently designed and developed base on the study on mechanism and technology of frost protection through air distrubance. The machine has simple structure and convenient maintainance without any pollution, and especially suitable for tea farms and orchards in hilly regions. Performances and frost protection effects were investigated both at the lab and in the field, and compared between self-developed machines and similar products imported from Japan. The results of fuzzy comprehensive evaluation based on improved analytic hierarchy process show that the self-developed model WT3000 achieved the best technology economy, which has the rated power of 3 kw, functioning area of 1000 m2 and could increase the canopy temperature by 2.86℃and raise the yield by 47.7% during the heavy frost season。The control system was running reliable and stable, and could save energy consumption by 20%, compared with Japanese products.
     Based on the occurrence and development of frost damage to tea plants and the thermal inversion measurement, mechanism and control stategy of frost protection through air disturbance was presented. The elevated wind machine and the automatic controller for frost protection were developed with our own intellectual property rights, and put into use in tea fields with excellent results. It is of theoretical and practical significance for the mechanism and control stategy to improve the technology of disaster reduction and elimination for China's agricultural frost/freeze damage.
引文
[1]LIANHONG GU, PAUL J. HANSON, W. MAC POST, et al. The 2007 eastern US spring freeze: Increased cold damage in a warming world?[J]. BioScience,2008,58(3):253-262.
    [2]JALILI A., JAMZAD Z., THOMPSON K., et al. Climate change, unpredictable cold waves and possible brakes on plant migration[J]. Global Ecology and Biogeography,2010,19(5):642-648.
    [3]G. A. MEEHL, C. TEBALDI, D. NYCHKA. Changes in frost days in simulations of twentyfirst century climate[J]. Climate Dynamics,2004(23):495-511.
    [4]DAVID W. INOUYE. The ecological and evolutionary significance of frost in the context of climate change[J]. Ecology Letters,2000(3):457-463.
    [5]DAVID W. INOUYE, MANUEL A. MORALES, GARY J. DODGE. Variation in timing and abundance of flowering by Delphinium barbeyi Huth (Ranunculaceae):the roles of snowpack, frost, and La Nina, in the context of climate change[J]. Oecologia,2002(130):543-550.
    [6]DAVID W. INOUYE. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers[J]. Ecology,2008,89(2):353-362.
    [7]BRANDO PM, DURIGAN G Changes in cerrado vegetation after disturbance by frost (Sao Paulo State, Brazil)[J]. Plant Ecology,2004,175(2):205-215.
    [8]AUGSPURGER, CAROL K. Spring 2007 warmth and frost:phenology, damage and refoliation in a temperate deciduous forest[J]. Functional Ecology,2009,23(6):1031-1039.
    [9]KEES STIGTER. Applied agrometeorology[M]. Heidelberg:Springer,2010.
    [10]中华人民共和国环境保护部.2008年中国环境状况公报[EB/OL]. (2009-06-04) [2011-10-20]. http://www.mep.gov.cn/gzfw/xzzx/wdxz/201004/P0201004215237441563 32.pdf.
    [11]钟秀丽.近20年来霜冻害的发生与防御研究进展[J].中国农业气象,2003,24(1):4-6.
    [12]中华人民共和国农业部种植业管理司.灾情数据库[DB/OL]. [2010-10-25]. http://zzys.agri.gov.cn/zaiqing.aspx.
    [13]中华人民共和国国务院新闻办公室.中国应对气候变化的政策与行动[EB/OL].(2008-10-29) [2011-10-12]. http://www.gov.cn/zwgk/2008-10/29/content_1134378.htm.
    [14]Food and Agriculture Organization of the United Nations. FAOSTAT[DB/OL]. [2010-10-25]. http://faostat.fao.org/site/567/default.aspx#ancor.
    [15]中投顾茶叶市场投资分析及前景预测报告[R].2010.
    [16]王庆.中国茶—海峡两岸茶产业发展报告[M].北京:人民卫生出版社,2009.
    [17]RICHARD L. SNYDER, J. PAULO DE MELO-ABREU. Frost protection:fundamentals, practice, and economics—Volume I[M]. Rome:Food and Agriculture Organization of the United Nations,2005.
    [18]RICHARD L. SNYDER, J. PAULO DE MELO-ABREU, SCOTT MATULICH. Frost protection:fundamentals, practice, and economics—Volume Ⅱ [M]. Rome:Food and Agriculture Organization of the United Nations,2005.
    [19]骆耀平.茶树冻害的发生及防御[J].中国茶叶,2008(1):30-31.
    [20]王芳,张元勤.倒春寒对名优茶生产的影响及其预防[J].农业装备技术2004,30(6):26.
    [21]叶小江.人工施放烟幕防止晚霜危害[J].中国茶叶,1996(5):42.
    [22]杨书运,江昌俊,孙亚东.茶园地面覆盖的保温防冻作用[J].中国农业气象,2010,31(2):305-309.
    [23]余继忠,黄海涛,师大亮,等.几种覆盖方法防止茶园早春霜冻的效果比较[J].中国茶叶,2008(2):30-31.
    [24]黎小萍,陈华玲.早春茶树冻害的发生及防御补救措施[J].中国茶叶,2003,(6):36.
    [25]唐一春,包云秀,刘德和.茶树霜冻害发生原因及其防治方法[J].云南农业科技,2000(6):39-40.
    [26]房用,李秀芬,慕宗昭,等.茶树抗寒性研究进展[J].经济林研究,2004,22(2):69-72.
    [27]高玳珍.茶树冻害与防冻技术的研究进展[J].湖南农业大学学报,1995,21(2):129-133.
    [28]HASHIMOTO SABURO. Plant treatment with urea peroxide:US,5079868[P]. 1992-01-14.
    [29]SKIRVINA R M, KOHLERB E, STEINERC H, et al. The use of genetically engineered bacteria to control frost on strawberries and potatoes. Whatever happened to all of that research?[J]. Scientia Horticulturae,2000,84(1-2):179-189.
    [30]S. ZILKAH, Z. WIESMANN, I. KLEIN, et al. Folk applied urea improves freezing protection avocado and peach[J]. Scientia Horticulturae,1996,66(1-2):85-92.
    [31]KLEVECZ ROBERT R.. Method for preventing frost damage to plants:US, US 4834899[P].1989-05-30.
    [32]DONOHUE THOMAS P., NASH RICHARD L. Method and apparatus for the protection of citrus trees from frost damage:US,4901472[P].1990-02-20.
    [33]BARR GARLAND G, HANRAHAN RICHARD. Treatment of plants for frost protection: US,5133891[P].1992-07-28.
    [34]ANTONIO C. RIBEIRO, J. PAULO DE MELO-ABREU, RICHARD L. SNYDER. Apple orchard frost protection with wind machine operation[J]. Agricultural and Forest Meteorology. 2006,141(2-4):71-81.
    [35]YAMAMOTO ATSUSHI, OISHI TETSUYA, NAKANO YOSHIYUKI. Frost prevention effect of low-mount frost prevention fan[J]. Shizuokaken Nogyo Suisanbu, Kankyo Shinrinbu Norin Suisan Kankei Shiken Kenkyu Seika Joho,2003, v 2002:56-57.
    [36]FERGUSSON ALEC H. B. Portable wind machine:US, US5244346[P].1993-09-14
    [37]BROWN PHILIP. Anti-frost fan:US, US4753034[P].1988-06-28
    [38]NARITA KAZUTAKA, SAKUMA HIROBUMI. Frost prevention fan:JP, JP10113076[P]. 1998-05-06
    [39]FURUTA MIKIO, ARAKI SHINSUKI. Frost prevention fan apparatus having automatic folding type neck mechanism:JP, JP2007000096[P].2007-01-11
    [40]AUGSBURGER H. K. M. Frost control in temperate climates through dissipation of cold air. Aspects of Applied Biology,2000,61:1-4.
    [41]JORGENSEN G, ESCALERA B M, WINEMAN D R, et al. Microsprayer frost protection in vineyards[J].1996, CATI Publication # 960803. [42] LEIB BRIAN G, FERNANDEZ DAN, FISHER ADRIAN. Frost protection design for fruit trees in Southwest Colorado[C]. Proceedings of Management of Irrigation and Drainage Systems:Integrated Perspectives, New York:1993. [43] KOC A B, HEINEMANN P H, CRASSWELLER R M. Automated cycled sprinkler irrigation system for frost protection of apple buds[J]. Applied Engineering in Agriculture,2000, 16(3):231-240. [44] VON BERNUTH, R. D. Undertree sprinkler systems for frost protection [C]. Proceedings of the Third National Irrigation Symposium held in conjunction with the 11th Annual International Irrigation Exposition, St. Joseph:1990. [45] LEBINGER MEIR. Frost protection using overhead sprinkler irrigation[J]. International Water & Irrigation Review,1994,14(1):12-14. [46] SHIMOMURA GIICHI; KADATA CHIAKI, NAKAGAWA KUMIKO, et al. Frost damage-preventive device:JP, JP2006238767 (A)[P].2006-09-14. [47] KUROIWA IKUO. Prevention of frost injury of tea field or the like:JP, JP1291729 (A)[P]. 1989-11-24.[48]李萍萍,戴青玲,胡永光,等.早春逆温条件下茶园近地温度时空分布特征[J].生态与农村环境学报,2008,24(1):25-27.[49]胡永光,李萍萍,戴青玲,等.茶园高架风扇防霜系统设计与试验[J].农业机械学报,2007,38(12):97-99,124.[50] KALMA J D, LAUGHLIN G P, CAPRIO J M, et al. The bioclimatology of frost[M]//GERALD STANHILL.Advances in bioclimatology_2.Berlin:Springer-Verlag, 1992.
    [51]李茂松,王道龙,钟秀丽,等·冬小麦霜冻害研究现状与展望[J].自然灾害学报,2005,4(4):72-78.[52]孙忠富.霜冻灾害与防御技术[M].北京:中国农业科技出版社,2001.[53] S E LINDOW. The role of bacterial ice nucleation in frost injury to plants [J]. Annual Review of Phytopathology,1983,21:363-384. [54] MICHAEL J. BURKE, STEVEN E. LINDOW. Surface properties and size of the ice nucleation site in ice nucleation active bacteria:Theoretical considerations [J]. Cryobiology,1990,27(1):80-84.[55]孙福在,赵廷昌.冰核细菌生物学特性及其诱发植物霜冻机理与防霜应用[J].生态学报,2003,23(2):336-345.[56]孙福在,赵廷吕,杨建民,等.杏树上冰核细菌种类及其冰核活性与杏花霜冻关系的研究[J].中国农业科学,2000,33(6):50-58.[57]王忠.植物生理学[M].北京:中国农业出版社,2000.[58]西涅里希科夫(B.B.Cинелъщиков).农业气象与农业[M].中央气象局农业气象研究室,译.北京:中央气象局农业气象研究室,1959.[59] LEVITT J. Responses of plants to environmental stresses[M].2nd ed. New York: Academic Press,1980.
    [60]潘瑞炽.植物生理学[M].第五版.北京:高等教育出版社,2004.
    [61]马克西莫夫.马克西莫院士选集[M].周小民,译.北京:科学出版社,1962.
    [62]奇尔科夫.农业气象学基础[M].方至,泽.北京:气象出版社,1987.
    [63]何维勋,冯玉香,夏满强.解冻速率对作物霜冻害的影响[J].应用气象学报,1993,4(4):440-445.
    [64]LEVITT J. The hardiness of plants[M]. New York:Academic Press,1956.
    [65]LEVITT J. A sulfhydryl-disulfide hypothesis of frost injury and resistance in plants[J]. Journal of Theoretical Biology,1962,3(3):355-391.
    [66]LYONS J M. Chilling injury in plants[J]. Annual review of plant physiology,1973,24: 445-466.
    [67]JAMES M LYONS, T A WHEATON, HARLAN K PRATT. Relationship between the physical nature of mitochondrial membranes and chilling sensitivity in plants[J]. Plant Physiology,1964,39(2):262-268.
    [68]DEXTER S T, TOTTINGHAM W E, GRABER L F. Preliminary results in measuring the hardiness of plants[J]. Plant Physiology,1930,5(2):215-223.
    [69]PALTA J P, JENSEN K G, LI P H. Cell membrane alterations following a slow freeze thaw cycle:ion leakage, injury and recovery[C]//P.H. Li and A. Sakai. Plant Cold Hardiness and Freezing Stress, Volume 2,1982, Academic Press, New York:221-242.
    [70]SCHNELL R C, VALI G Atmospheric ice nuclei from decomposing vegetation[J]. Nature, 1972,236:163-213.
    [71]MAKI L R, GALYAN E L, CHANG-CHIEN M M, et al. Ice nucleation induced by pseudomonas syringae[J]. Applied and Environmental Microbiology,1974,28(3): 456-459.
    [72]LINDOW S E, ARNY D C, UPPER C D. Ice nucleation induced by pseudomonas syringae[J]. Phytopathology,1978,68(3):523-527.
    [73]KIM H K, ORSER C S, LINDOW S E, et al. Xanthomonas campestris pv.translucens strains active in ice nucleation [J]. Plant Disease,1987,71(11):994-997.
    [74]STEVEN E. LINDOW, SUSAN S. HIRANO, WILLIAM R. BARCHE. Relationship between Ice Nucleation Frequency of Bacteria and Frost Injury[J]. Plant Physiology,1982,70(4): 1090-1093.
    [75]孙福在.我国生物冰核研究进展[J].中国农业科学,1996,29(5):62-68.
    [76]LINDOW S E, MCGOURTY G, ELKINS R. Interactions of antibiotics with pseudomonas fluorescens strain A506 in the control of fire blight and frost injury to pear[J]. Plant Physiology,1996,86(8):841-848.
    [77]孙福在,赵廷昌,杨建民,等.杏树上冰核细菌种类及其冰核活性与杏花霜冻关系的研究[J].中国农业科学,2000,33(6):50-58.
    [78]孙福在,赵廷昌.冰核细菌生物学特性及其诱发植物霜冻机理与防霜应用[J].生态学报,2003,23(2):336-345.
    [79]冯玉香.黄瓜霜冻与冰核活性细菌的关系[J].园艺学报,1990,17(3):211-216.
    [80]刘建华,陶毓汾,何维勋,等.冰核活性细菌与玉米和大豆霜冻关系的研究[J].中国农 业气象,1990,11(1):1-5.
    [81]赵荣艳,付占芳,李绍华,等.INA细菌与杏花期霜冻害研究进展[J].果树学报,2005,22(3):265-270.
    [82]孟庆瑞,李彦慧,李帅英,等.防除杏树(Prunus armeniaca L.)冰核细菌药剂筛选及花期防霜效果[J].生态学报,2007,27(10):4191--4196.
    [83]孙福在,赵廷昌,牟丰盛,等.生防菌和药剂除冰核细菌防御玉米霜冻研究[J].自然灾害学报,2003,12(4):115-119.
    [84]TAKAHIRO MAKINO. Ice-nucleation activity of bacteria isolated from gemmisphere of tea trees[J]. Japanese Journal of Phytopathology,1983,49(1):32-37.
    [85]MASAO GOTO, KAZUMU KODAMA, BEN-LI HUANG. Selective media for ice nucleation-active bacteria of tea buds[J]. Plant Physiology,1990,56(4):515-522.
    [86]黄晓琴.山东茶树冰核细菌的分离、鉴定及其与霜冻害关系研究[D].泰安:山东农业大学,2009.
    [87]WILLIAM IRELAND. Frost and crops—frost prediction and plant protection[M]. Eastbourne,2005.
    [88]孙忠富.中国西部地区霜冻灾害与减灾技术应用展望[c].西部大开发—气象科技与可持续发展学术研讨会.北京,2000:80-83.
    [89]郗荣庭.果树栽培学总论[M].第三版.北京:中国农业出版社,2004.
    [90]唐广,蔡涤华,郑大玮.果树蔬菜霜冻与冻害的防御技术[M].北京:农业出版社,1993.
    [91]POWELL A A, HIMELRICK D G Principles of freeze protection for fruit crops [R]. Alabama Cooperative Extension System, ANR 1057B, Alabama:2000.
    [92]SNYDER R L, CONNELL J H. Ground cover height affects pre-dawn orchard floor temperature[J]. California Agriculture,1993,47(9):9-12.
    [93]BARFIELD B J, GERBER J. F. Modification of the aerial environment of plants[M]. St. Joseph:the American Society of Agricultural Engineers,1979.
    [94]SMYTH M, SKATES H. A passive solar water heating system for vineyard frost protection[J]. Solar Energy,2009,83(3):400-403.
    [95]MARGARET LAND. New freezing, frost protection research at VRIC. [EB/OL]. [2010-10-25]. http://www.fruitandveggie.com/index.php?option=com_content&task=view&id=3117&It emid=137
    [96]#12
    [97]COBDEN KENNETH J. Frost control:US, US5244346[P].1993-09-14
    [98]#12
    [99]Evans R G. Frost protection in orchards and vineyards[R/OL]. [2010-10-25]. http://www.bsyse.prosser.wsu.edu/report/frost.html
    [100]GUARGA FERRO RAFAEL. Selective inverted drain:US, US 5647165[P].1997-07-15
    [101]GUARGA FERRO RAFAEL. Device for the creation of containment barriers for cold air in atmospheric conditions corresponding to radiation frosts:US, US 2005/0194121 A1[P]. 2005-09-08
    [102]GUARGA FERRO RAFAEL. Device for the creation of containment barriers for cold air in atmospheric conditions corresponding to radiation frosts:US, US 7654035 B2[P]. 2010-02-02
    [103]THARA PRABHA, GERRIT HOOGENBOOM. Evaluation of the Weather Research and Forecasting model for two frost events[J]. Computers and Electronics in Agriculture,2008, 64(2):234-247.
    [104]BRIAN A SMITHA, GERRIT HOOGENBOOMA, RONALD W MCCLENDONA. Artificial neural networks for automated year-round temperature prediction[J]. Computers and Electronics in Agriculture,2009,68(1):52-61.
    [105]FEDERICA ROSSI A, OSVALDO FACINI, SILVIA LORETI, et al. Meteorological and micrometeorological applications to frost monitoring in northern Italy orchards[J]. Physics and Chemistry of the Earth,2002,27(23-24):1077-1089.
    [106]ALI ASGHAR GHAEMI, MOHAMMAD RAFIE RAFIEE, ALI REZA SEPASKHAH. Tree-temperature monitoring for frost protection of orchards in semi-arid regions using sprinkler irrigation[J]. Agricultural Sciences in China,2009,8(1):98-107.
    [107]AW, ST. Citrus growers using helicopters to ward off nature's cold bite[J]. Aviation Week and Space Technology,1988,2nd May.
    [108]杨亚军.中国茶树栽培学[M].上海:上海科学技术出版社,2005.
    [109]朱秀红,马品印,王军.日照地区茶树冻害气候原因分析[J].中国茶叶,2008,30(2):28-29.
    [110]静岡県農林水產部.茶生產指導指针[M].静冈:静岡県經濟農業協同組合連合会,2003.
    [111]张一平,刘洋.云南占茶园与常规茶园小气候特征比较研究[J].华南农业大学学报,2005,26(4):17-21.
    [112]肖金香,穆彪,胡飞.农业气象学[M].第二版.北京:高等教育出版社,2009.
    [113]王春乙.中国重大农业气象灾害研究[M].北京:气象出版社,2010.
    [114]姚胜芳.西南低压对冰(霜)冻天气过程的影响[J].广西气象,2006,27(增Ⅰ):18-20.
    [115]邓聚龙.灰理论基础[M].武汉:华中科技大学出版社,2002.
    [116]邓聚龙.灰预测与灰决策[M].武汉:华中科技大学出版社,2002.
    [117]邓聚龙.灰色系统基本方法[M].第二版.武汉:华中科技大学出版社,2005.
    [118]孙惠合,汀顺勤,晁林海.宿州春季重旱发生年份的灰色神经网络预测模型[J].中国农业气象,2009,30(2):271-274.
    [119]潘护林.山东省农业气象灾害灾情统计特征与灰色关联分析[J].西北师范大学学报(自然科学版),2008,44(5):94-98.
    [120]张星,陈惠,周乐照.福建省农业气象灾害灰色评价与预测[J].灾害学,2007,22(4):43-45,56.
    [121]尹爱芹,郭小春,郭化文.灰色GM(1,1)模型的改进及其在气象上的应用[J].山东师范大学学报(自然科学版),2003,18(4):82-86.
    [122]中国气象局令.气象灾害预警信号发布与传播办法[EB/OL]. (2008-06-12) [2011-10-12]. http://www.cma.gov.cn/zcfg/bmgz/200806/t20080612_9692.html.
    [123]QX/T88-2008,作物霜冻害等级[R].北京:气象出版社,2010.
    [124]程德瑜.安徽省淮河以南地区茶树春季危害积温的研究[J].安徽气象,1982,2:37-43.
    [125]黄寿波.我国茶树气象研究进展(综述)[J].浙江农业大学学报,1985,11(1):87-96.
    [126]SHOUBO HUANG. Meteorology of the tea plant in China:a review[J]. Agricultural and Forest Meteorology,1989,47:19-30.
    [127]刘金芳,陈年生.茶园霜冻害调查分析与防范措施[J].蚕桑茶叶通讯,2003,113(3):12-13.
    [128]王烨军,黄建琴,罗仲兴,等.山地茶园防冻技术研究[J].中国农学通报,2009,25(15):165-168.
    [129]李传忠,袁汉明.低温对茶树品种叶片受冻程度的调查[J].茶叶通讯,1992,4:34-35.
    [130]王世斌.南京地区晚霜冻对茶树的危害及防御[J].南京农专学报,2001,17(4):49-52.
    [131]李秀芬,房用,乔勇进,等.茶树越冬后叶片含水量与耐寒性研究初报[J].山东林业科技,2004,150(1):12-14.
    [132]陆婉珍.现代近红外光谱分析技术[M].第二版.北京:中国石化出版社,2006.
    [133]严衍禄.近红外光谱分析基础与应用[M].北京:中国轻工业出版社,2005.
    [134]李民赞.光谱分析技术及其应用[M].北京:科学出版社,2007.
    [135]罗一帆,郭振飞,朱振宇,等.近红外光谱测定茶叶中茶多酚和茶多糖的人工神经网络模型研究[J].光谱学与光谱分析,2005,25(8):1230-1233.
    [136]中华人民共和国环境保护部.2009年中国环境状况公报[EB/OL]. (2010-05-31) [2010-10-20]. http://www.mep.gov.cn/gzfw/xzzx/wdxz/201006/P0201006035516333877 39.pdf.
    [137]舒英格,王家伦,何腾兵,等.茶叶生产冻害减灾恢复技术指导手册[G].贵州大学、贵州省农业科学院茶叶研究所、贵州省科学技术厅联合编写.中国农业科学院茶叶研究所编茶树冻害与防护技术手册
    [138]维基百科.日出方程式[G/OL]. (2011-08-20) [2010-10-20]. http://zh.wikipedia.org/wiki/%E6%97%A5%E5%87%BA%E6%96%B9%E7%A8%8B%E5% BC%8F#.E6.97.A5.E5.87.BA.E5.92.8C.E6.97.A5.E8.90.BD.E7.9A.84.E8.A8.88.E7.AE.97.
    [139]李文.地形气候差异在作物精细区划中的应用[C]//全国农业气象学术年会论文集.桂林:中国气象学会农业气象与生态学委员会,2008:330-332.
    [140]黄寿波.茶树气象生态及其调控方法[J].茶叶,2004,30(3):127-129.
    [141]简慰民,沈雪芳,刘晓清.我国亚热带东部丘陵山区农业气象灾害与减灾对策[c].湖南师范大学自然科学学报,1992,15(1):84-88.
    [142]左平,刘晓清.湖南丘陵山区林业气象灾害的研究[J].经济林研究,1994,12(1):28-32.
    [143]蒋亚坤.GPRS无线网络通信在云南电网电能量采集系统中的应用[J].云南电力技术,2006,34(2):28-29.
    [144]孙庆吉.基于GPRS的电能计量无线采集系统设计[D].哈尔滨:哈尔滨理工大学,2008.
    [145]凌志光,蒋军,王羹.基于ZigBee技术的无线电能采集终端的设计[J].仪器仪表用户,2007,14(2):82-83.
    [146]卢建刚,陆魁军.基于GPRS的热网无线数据采集系统[J].计算机应用研,2006,23(3):222-223.
    [147]吴杰,冯冬青.GPRS技术在管网压力监测系统中的应用[J].微计算机信息,2006,22(19):137-139.
    [148]李江全,马富裕,刘恩博,等.基于SMS开发棉田环境参数无线数据采集系统[J].石河子大学学报:自然科学版,2005,23(3):385-388.
    [149]解金耀.基于SMS的无线信息采集系统的研究与设计[D].大连:大连海事大学,2005.
    [150]张西良,丁飞,张世庆.温室环境无线数据采集系统的研究[J].中国农村水利水电,2007(2):8-10,13.
    [151]孟未来.基于无线传感器网络技术的温湿度数据采集系统的研制[D].沈阳:沈阳工业大学,2007.
    [152]胡春奎.基于CC1110的田间无线数据采集系统[J].农业网络信息,2008(9):124-126,137.
    [153]回楠木,乔晓军,王成.Zigbee无线农田采集控制系统的实现方案[J].农机化研究,2008(2):63-66.
    [154]蔡义华,刘刚,李莉,等.基于无线传感器网络的农田信息采集节点设计与试验[J].农业工程学报,2009,25(4):176-178.
    [155]俞海红,何勇,裘止军.农田信息无线远程采集和处理系统的研究[J].浙江大学学报:农业与生命科学版,2006,32(1):106-109.
    [156]乔俊,汪春,王熙,等.基于GSM无线传输的温室环境数据采集系统[J].农机化研究,2008,(4):174-177.
    [157]司永胜.基于无线数传技术的农田数据采集系统的设计与开发[D].保定:河北农业大学,2005.
    [158]谢季坚,刘承平.模糊数学方法及其应用[M].第三版.武汉:华中科技大学出版社,2006.
    [159]谭跃进,陈英武,罗鹏程,等.系统工程原理[M].北京:科学出版社,2010.
    [160]唐幼纯,范君晖.系统工程:方法与应用[M].北京:清华大学出版社,2011.
    [161]比晓丽,洪伟.生态环境综合评价方法的研究进展[J].农业系统科学与综合研究,2001,17(2):122-124,126.
    [162]张会云,黄国青.基于模糊综合评价的信息系统服务质量评价研究[J].情报杂志,2007,26(4):30-32.
    [163]金菊良,魏一鸣,丁晶.基于改进层次分析法的模糊综合评价模型[J].
    [164]刘世豪,叶文华,唐敦兵,等.基于层次分析法的数控机床性能模糊综合评判[J].水利学报,2010,40(1):68-72,92.