不同铃重类型棉花的源库协调特性及其生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验于2002-2003年在河北农业大学西校区标本园进行。以单铃重为标准选择5个代表性棉花基因型作为试验材料(包括小铃型品种三江八大花和册亨大棉花、单铃重居中的转Bt基因抗虫棉新33B、单铃重较大的品种转Bt基因抗虫杂交棉中棉29以及超大铃品种宿棉9108),系统地研究了不同铃重基因型棉花源库的生理特性及其它与产量和品质密切相关的指标,旨在探讨不同铃重基因型棉花的源库特征及其协调性,为栽培管理措施的制定和生理育种提供理论依据。结果表明:
     1.子叶叶面积大小是鉴定棉花产量性状的早期形态指标,在同一类型棉花品种中,子叶叶面积与单铃籽棉重存在正相关。小铃品种干物重在前期低于大铃品种,但三片真叶期以后,其干物重超过大铃品种。转Bt棉品种在苗期的子叶面积和干物质积累量都小于常规棉品种,说明转Bt棉品种营养生长迟缓。
     2.叶片中的叶绿素、可溶性糖、淀粉含量,25d日龄前铃壳中可溶性糖、淀粉含量,棉铃内部充实期棉铃干物重日平均增长量,以及衣分、纤维长度、比强度、整齐度指标均受不同铃重基因型的影响,并与不同铃重基因型呈显著正相关;35d日龄以前,棉籽内的淀粉含量、铃壳率、吐絮期主茎叶片中的SOD活性的高低与不同铃重基因型呈负相关。
     3.各供试棉花品种铃叶中的叶绿素a/b值随着果枝节位的降低而下降,表现出下部铃叶对弱光越来越强的适应能力。主茎叶片中的可用态糖含量(可溶性糖与淀粉含量之和)在营养生长期高于生殖生长期,以现蕾前后最高。可用态糖含量与可溶蛋白的比值(C/N)在盛花期达最高。棉籽内的WSC含量受棉铃空间着生位置的影响。主茎叶片中SOD活性下降,POD活性升高时预示着叶片将衰老脱落。
     4.供试小铃品种源库性状指标表现为:单个棉铃对营养物质的需求量少,受其品种特性及库对源的反馈调节机制的影响,源叶内一些同光合生产有关的物质含量和活性较低,其光合同化能力较弱,叶绿素含量、叶绿素a/b值均较低,光合生产能力弱,不能高效地利用光照条件同化较多的碳水化合物,源的质量不高。受基因型和源的限制,其籽棉干物质积累时间较短,棉籽对同化物的利用能力低,后期铃壳向棉铃内部运转的同化物数量少,库活性弱;铃重变异度大,最高单铃重出现在棉株上部果枝,外围果节的单铃重大于内围果节。铃型小的品种,但其营养器官发育良好,光合叶面积高值持续期较长,后期叶面积下降幅率较小,有足够的光合叶面积同化较多的营养物质供应棉铃,LAI变化动态合理,利于形成高产群体结构。由于其单铃籽棉重小,虽其单株结铃数不低,但最终籽棉产量不高。由此可见,库容量小是限制小铃品种高产的主要因素,任何提高库容量的措施都应能提高产量。
    
     5.供试大铃品种源库性状表现为:最高单铃重出现在棉株上部果枝,同一
    果枝的内围果节单铃重大于外围果节。棉铃对同化物的吸收利用率高,棉籽内
    有较多的淀粉合成纤维素,利于籽棉干物重的积累。到棉铃内部充实期止,单
    位重量铃壳内WSC和淀粉向棉铃内的转移率较高,大铃品种的库活性强。叶片
    中叶绿素含量高且高值持续期较长,净光合同化能力较高,源活性较强,但早
    期叶面积增长缓慢,最大叶面积持续时间短,后期LAI下降迅速,不能保证后
    期有较充足的同化物供应,从而造成蕾、铃大量脱落,伏桃脱落率最高,最终
    产量不高。由分析可知,大铃品种产量进一步提高的主要限制因素源叶面积不
    足,生产上可通过“扩源”来提高籽棉产量。
     6.转Bt棉品种绝大部分性状指标居于小铃和超大铃之间,其源库性状表现
    为:前期营养体生长较迟缓,后期LAI下降幅度高于其它常规棉。叶片后期的
    光合性能比较好,蕾、铃脱落率低。不同转Bt基因抗虫棉品种的源库特性存在
    一定的差异。其中新棉33B和中棉所29比较结果如下:
     新棉33B叶片中的叶绿素含量在全生育期保持较高水平,后期相对稳定;
    其结铃性强,但棉铃对营养物质的吸收利用能力较弱,不同结铃区位的单铃重
    表现为:中部>下部>上部。中棉所29叶片中叶绿素含量自盛铃后下降迅速;
    棉株旺盛生长期对弱光的吸收利用率高于其它品种:进入吐絮期后衰老趋势明
    显。库活性较强。
     总之对于供试大铃品种来说,限制其产量进一步提高的主要因素是源,尤
    其是源叶面积不足;对于小铃品种,其产量限制因素为库,特别是库的活性需
    要进一步提高。
Five cottons varieties, small-boll varieties SanJiangBaDaHua and CeHengDaMianHua, middle-boll Bt-transgenic variety XinMian33B, big-boll Bt-transgenic hybrid CCRI29 and extreme big-boll cotton SuMian9108, were used to study the coordination of source-sink at the experimental station of Hebei Agricultural University from 2002 to 2003. The author scientifically studied on the physiological characteristics of source-sink and on others index related closely to yield and fiber quality in different boll-weight genotype cottons in order to elucidate the characteristics of source-sink in different genotypes, by which to provide theoretical support on drawing up cotton management strategies and identifying useful physiological index in early period of breeding work. The results were as follows:
    1. Cotyledon area was an index of yield in early growth period of cotton and existed positive correlation to seed cotton weight per boll. Dry weight of small-boll variety cotton plant was lower than big-boll variety in early period, and it was higher than big-boll variety after three leaves stage. As to Bt-transgenic, the cotyledon area and plant's dry matter accumulation during seedling period were less than other cotton varieties. It suggested that vegetative growth of Bt-transgenic cotton was slower than that of others.
    2. The boll-weights significantly positively correlated with the content of chlorophyll, soluble sugar and amylum content in the leaves, the content of soluble sugar and amylum in the boll-bell during the first 25d after flowering, the average increase in dry matter weight of boll per day during the induction of weight enhancement of ball period and cotton fiber's quality indexes, such as, length, strength and uniformity; while negatively correlated with the content of amylum in cottonseed at the first 35d after flowering, SOD activity during boll-opening stage in main stem leaves and the ratio of boll-bell's weight to boll.
    3. The chlorophyll a/b in branches' leaves of every cotton varieties decreased with the lowing of branches' positioning, which showed that the lower branches' leaves tolerant sunshine deficiency. The content of usable sugar (toll content of soluble sugar and amylum) was higher during vegetative growth period than in reproduction growth period, with having the maximum value at the first bud
    
    
    
    appeared. The ratio of usable sugar to soluble protein content reached the summit at flourish flowering stage. The content of soluble sugar in cottonseed was affected by boll's spatial position. The SOD activity declines and the POD activity increased at the same time in main stem leaves, which suggested that the leaves would pre-mature senescence.
    4. The source-sink physiological characteristics of small-boll variety showed that the change of LAI was beneficial to form high-yield group canopy structure. But its many physiological parameters, such as, lower chlorophyll content and chlorophyll a/b and weaker photosynthesis capability all indicate that small-boll couldn't use strong light to produce photosynthetic products as much as big-boll categories produced, showing that the source quality of small-boll was poor. Under the effect of source limitation, small-boll variety had shorter induction period of weight enhancement of boll; the capability of utilizing photosynthesis matter of cottonseed of small-boll genotype, which just contested that the sink activity of small-boll category was weaker than that of big-boll ones. Moreover, the boll weights of small-boll category fluctuated between a large of scope. The heaviest boll was in the upper branches, while in the same branch, the boll weight of the third position was heavier than that of first position.
    5. As for the big-boll genotypes, the heaviest bolls located on the upper branches, at the same time, in a branch, the boll weight of first position was heavier than that of third position. Big-boll categories had longer period of keeping high chlorophyll content in leaves, stronger photosynthesis and more plentiful
引文
[1] 李绍长.王荣栋.作物源库理论的发展及其在生产中的应用[J].作物杂志,1998(1):10-12.
    [2] Venkateswarlu B. Source-sink relationships in crop plants[J]. IRPS, 1987. 125.
    [3] Ashley D A. (14)~C-labelled photosynthate translocation and utilization in cotton plants [J]. Crop Sci. 1972,12:69-74.
    [4] Benedilt C R, Kohel R J. Export of (14)~C-assimilates in cotton leaves [J]. Crop Sci.1975,15:367-372.
    [5] 金聿,陈布圣.棉花栽培生理[M].农业出版社,1987.
    [6] 承泓良.陆地棉铃数,铃重和衣分率的遗传参数研究[J].江苏农业科学,1988(4),46-49.
    [7] Bhardwajsn. Physiologyical parameters for higher productivity in upland cotton [J]. Indian J. Agric. Sci., 1975,45(3): 124-127.
    [8] 杨守仁.水稻源与库的辩证关系[M].北京:农业出版社,1980.176-185.
    [9] 凌启鸿.水稻高产群体质量及其优化控制讨论[J].中国农业科学,1993,26(6):13-17.
    [10] 赵全志,高尔明,黄丕生,等.源库质量与作物超高产栽培及育种[J].河南农业大学学报,1999,33(3):226-230.
    [11] 洪植蕃,林菲.两系杂交稻栽培生理生态特性.福建农学院学报,1992,21(3):251-258.
    [12] 江龙,韦宏恩,杨昌达,等.不同水稻品种的源库特性研究[J].耕作与栽培,1999(增刊):50-52.
    [13] 曹显祖,朱庆森.水稻品种的源库特征及其类型划分的研究[J].作物学报,1987,13(4):265~272.
    [14] 朱庆森,曹显祖,骆亦其.水稻籽粒灌浆的生长分析[J].作物学报,1988,14(3):182~193.
    [15] 高松洁,王文静,宋家永,等.小麦大粒品种源库特点及其与穗粒重关系的研究[J].华北农学报,2002,17(1):46-50.
    [16] 高松洁,王文静,陈时良.不同源库型小麦品种生理特点及其与穗粒重的关系[J].华北农学报,2000,15(1):17-21.
    [17] 高松洁,王文静,刘建平,等.不同源库型小麦品种穗粒重的形成[J].河南职技师院学报,2000,28(4):4-6.
    [18] 贺明荣,王振林,曹鸿鸣.小麦不同品种光合速率和(14)~C同化物分配对源库比改变的响应[J].植物学通报,1998,15(增刊):91-94.
    [19] 赵久然,孙政才,陈国平,等.紧凑型玉米增产机理的进一步探讨[J].北京农业科学,1995,13(3):4-8.
    [20] 郭玉秋,董树亭,王空军,等.玉米不同穗型品种产量、产量构成及源库关系的群体调节研究[J].华北农学报,2002,17(增刊):193-198.
    [21] 薛吉全,马国胜,路海东.紧凑大穗型玉米陕单902群体源库性状与产量形成的研究
    
    [J].西北植物学报,2002,22(6):1336-1342.
    [22] 李雁鸣.作物生态生理[M].1994.104;
    [23] 王韶唐.小麦的源库关系.国外农学——麦类作物,1984(3):15-18.
    [24] 马国辉.早籼稻库的物质积累能力的研究[J].作物研究,1988,2(2):2-6.
    [25] 马国辉,邓启云.亚种间杂交水稻维管束性状及其与籽粒充实度关系的初步研究[J].湖南农学院学报,1992,12(2):7-11.
    [26] 玖村郭彦.从源库关系看日本水稻发展[J].国外农学——水稻,1983,(3):1-5.
    [27] 陈学斌,徐晓洁.朱兆良,等.两系法杂交水稻源库特征及光合产物流向[J].湖南农业科学,1989,(1):7-9.
    [28] Yoshida S. Effect of CO_2 enrichment at different stages of panicle development on yield components and yield of rice [J]. Soil Sci. Plant Nutr. Tokyo. 1973, 19:311-316.
    [29] Lafitte H R. Photosynthesis and assimilate partitioning and closely related lines of rice exhibiting different source-sink relationships [J]. Crop Science, 1984, 24(3) :447-452.
    [30] 刘晓冰.试论作物的源库系统[J].农业系统科学与综合研究,1992,8(2):131-134.
    [31] 凌启鸿,杨建昌.水稻群体粒叶比与高产栽培途径的研究[A].见凌启鸿主编.稻麦研究新进展[C].南京:东南大学出版社,1991,82-89.
    [32] 李少昆,赵明,王树安.玉米株型研究综述[J].玉米科学,1995,4:34-47.
    [33] 吴相钰.光合作用与作物生产力,计算机模拟与高级植物生理[M].北京:中国农业出版社,1990.
    [34] 赵海祯,梁哲军,齐宏立,等.转Bt基因抗虫棉源库关系及调控效应研究[J].华北农学报,2003,18(2):1-4.
    [35] KOMER E. Source physiology and assimilate transport: the interaction of source metabolism, starch storage and phloem export in source leaves and the effects on sugar status in phloem [J]. Australian Journal of Plant Physiology. 2000. 27(6):497-505.
    [36] 孙学振,王振林,张红.源库比对麦套棉干物质生产与产量构成的影响[J].中国棉花,1995,22(12):18-19.
    [37] 陈德华,吴云康,段海,等.棉花群体叶面积载荷量与产量关系及对源的调节效应研究[J].棉花学报,1996,8(2):109-112.
    [38] 田晓莉,杨培珠,段留生.转Bt基因抗虫棉源库关系的初步研究[J].棉花学报,1999,11(3):151-156.
    [39] 田晓丽,杨培珠,王保民,等.转Bt基因抗虫棉源器官的建成及其功能[J].棉花学报,2003,15(2):91-96.
    [40] CARTER R, CLOWER J, YOUNG R, et al. Transgenic Bt cotton. Consultants' views and observations[A]. Proc Belt Cotton Conf.[C], 1997, 875.
    [41] WILSON F D. Yield components and fiber properties of insect resistant cotton lines containing a Bacillus thuringiensis toxin gene[J]. Crop Sci., 1994, 34:38-41.
    [42] 丁双阳,何钟佩,段留生.抗虫棉中棉所30号种子萌发过程中生理变化的研究[J].中国农业大学学报,1998,3(增刊):52-57.
    
    
    [43] 于凤铃,秦新敏,宁燕青,等.新棉33B的生育特性及主要栽培措施[J].中国棉花,1999,26(8):42-43.
    [44] 孙济中,刘金兰,张金发.棉花杂种优势的研究和利用[J].棉花学报,1994,6(3):135-139.
    [45] 王志忠,王兆晓,崔瑞敏,等.种间杂交与陆地棉品种间杂交种优势利用研究[J].棉花学报,1998,10(3):162-166.
    [46] Basu A K. Hybrid cotton results and prospects[A]. In Constable G A, Forester N W, eds. Challenging the future. Proc World Cotton Res Conf-Ⅰ[C]. Brisbane: CSIRO, 1995, 335-341.
    [47] Meredith W R Jr, Brown J S. Heterosis and combining ability of cottons originating from different regions of the United States[J]. The Journal of Cotton Science, 1998, (2):77-84.
    [48] Reid P E., Performance of F_1 and F_2 hybrids between Australian and USA commercial cotton cultivars [A]. In: Constable G A, Forester N W, eds. Challenging the future. Proc World Cotton Res Conf-Ⅰ[C]. Brisbane: CSIRO, 1995, 346-349.
    [49] 王武,聂以春,张献龙,等.转基因抗虫组合在棉花杂种优势利用中增产原因剖析[J].华中农业大学学报,2002,21(5):419-424.
    [50] 吴云康,陈德华,段海,等.转基因抗虫棉杂交种生育特性初探[J].江苏农业科学,1997,2:19-22.
    [51] 金津,陈布圣.棉花栽培生理[M].北京:农业出版社,1987.
    [52] DEVENPORT T L. Water stress, hormone transport and leaf abscission [A]. In: proceeding Beltwide of Cotton Product Research Conferences[C]. 1987, 54-55
    [53] BENEDICT C R. et al. Export of (14)~C-assimilates in cotton leaves[J]. Crop Sci., 1975, 15:367~372.
    [54] DAVIES P J. Plant hormonse: physiology, chemistry and molecular biology [M]. Kluwer Academic Publishers. Dordrecht. Netherlands. 1995.
    [55] 段留生,何钟佩.源库关系改变对棉叶内源激素的影响[J].西北植物学报,1999,19(6):116-121.
    [56] 陈德华,吴云康,段海,等.转基因抗虫棉杂交种生长规律及生理特性研究[J].中国棉花,1997,24(6):15-17.
    [57] 王振林,尹燕枰,贺明荣,等.小麦源库比与产量形成期同化物分配及结实性的关系[J].山东农业大学学报,1995,26(2):144-149.
    [58] 纪从亮,俞敬忠,齐友良,等.棉花高产品种的源库流特点研究[J].棉花学报,2000,12(6):298-301.
    [59] 徐立华,钱大顺,陈祥龙,等.陆地棉品种间杂交棉铃发育的动态研究[J].棉花学报,1996,8(2):83-87.
    [60] 梁哲军,赵海祯,齐宏立,等.干旱地区抗虫棉源库调控及优化途径研究[J].耕作与栽培,2003,2:19-20,31.
    [61] 过兴先.棉花光合产物的积累和分配及其夜温和纤维发育之关系[J].作物学报,1991,
    
    17(2):115~122.
    [62] 蒋国柱.棉花高产优质栽培措施优化决策模型研究[J].棉花学报,1990,2(1):51~57
    [63] 朱明哲.棉花高产优质高效综合农艺措施数学模型的研究[J].华北农学报:1988,13(1)13~19
    [64] 宋家祥,金桂红.棉花高产试验初报[J].江苏农业科学,1979,(3):28~34.
    [65] 杨方玉,周桂生,陈源,等.高产棉花株型与产量关系的研究.江苏农业科学,2001,(2):29-32.
    [66] 陈德华.高产棉铃增重调节机理研究[D].中国农业大学博士论文,2000.
    [67] 王建华,刘鸿先,徐同.超氧化物歧化酶在植物生理胁迫和衰老生理中的作用[J].植物生理学通讯,1989,25(1):1-7.
    [68] 袁朝兴,丁静.Effect of water on the content of IAA and the activities of IAA oxidase and peroxidase in cotton leaves[J].植物生理学报,1990,16(2):179-184.
    [69] 李伶俐,杨青华,李文.棉花幼铃脱落过程中IAA、ABA、MDA含量及SOD、POE活性的变化[J].植物生理学报,2001,27(3):215-220.
    [70] 李妙,李俊明,裴宝琦.病害对不同抗枯类型棉花品种SOD和POD活性的影响[J].棉花学报,1995,7(1):52-55.
    [71] 刘仲齐,吴兆苏,俞世蓉.吲哚乙酸和脱落酸对小麦籽粒淀粉积累的影响.南京农业大学学报,1992,15(1):7-12.
    [72] 王瑞英,于振文,潘庆民,等.小麦籽粒发育过程中激素含量变化.作物学报,1999,25(2):227-231.
    [73] 李连禄,赵明,丁在松.玉米穗库发育的不同步性与内源激素作用的研究.中国农业大学学报,2001,6(1):30-36.
    [74] 何钟佩.作物激素生理及化学控制[M].北京:中国农业大学出版社,1997,43-50.
    [75] Stewart J M. Cotton physical[M]. Memphis Tennessee, USA: The cotton foundation publisher, 1986, 261-300.
    [76] Rodgers J P. Cotton fruit development and abscission fluctuations in the level of cytokinins[J] Hort. Sci., 1981, 56:99-106.
    [77] 陈德华,成广明,周桂生,等.高产棉花整株铃重的提高与棉铃内源激素GA_3及ZR的关系.扬州大学学报(农业与生命科学版),2002,23(1):68-71.
    [78] 丁静.棉株内碳素同化物质的运转与蕾铃脱落的关系[J].实验生物学报,1960;7(1-2):147-160.
    [79] Helmut Herzog.小麦籽粒建成期的源与库中细胞激动素的产生及其调节[J].国外农学——麦类作物,1987,4:30-32.
    [80] Bonnett G D. Effects on the stem of winter barly of manipulating the source and sink during grain filling[J]. Journal of Experimental Bottany, 1993, 44(258): 83-91.
    [81] 陈付贵,黄树梅.高产棉花理想株型经济性状时空分布数学模型[J].中国棉花,1993,20(4):21-23.
    
    
    [82] Kerby T, Wofford T, Presley J. Et al. Field porformance of transgenic Bt cotton in multiple locations across the belt [A]. Proc. Beltwide Cotton Conf.[C], 1995.574-576.
    [83] Yoshiharu. Effects of source-to-sink ration on carbohydrate production and senescence of rice flag leaves during the ripening period[J]. Crop Sci., 1993,33(4):547-553.
    [84] Naimei T U. The source-sink relationships of low land rice[M], the compilation of experiments in rice plant, TLATC, JICA, 1994.
    [85] Morgan P W. Intact leaves exhibit a climactic likerise in ethylene production before abscission[J]. Plant Physiol., 1992, 100(3): 1587-1590.
    [86] Peoples T R. Influence of boll removal in assimilate partitioning in cotton [J]. Crop Sci., 1981.21(2):283-286.
    [87] 李大跃.杂种棉光合物质生产及其源库关系的研究[J].四川棉花,1992,(1):21-26.
    [88] 孙济中,陈布圣.棉作学[M].北京:中国农业出版社,1999,10:188.
    [89] 陈法军,戈峰,刘向辉.蕾铃期繁殖器官的损失对棉花产量的影响[J].生态学报,2003,23(4):743-750.
    [90] 江龙,韦宏恩等.不同水稻品种的源库特性研究[J].耕作与栽培,1999(4):50-51
    [91] 李永山,唐秉海,张凯,等.不同年代棉花品种产量构成、纤维品质及其系谱分析[J].棉花学报,2001,13(1):16-19.
    [92] 孙园丁,金运海.马克隆值与棉花品级和纺织的关系[J].中国纤检,2003 11.28.
    [93] 倪金柱.棉花栽培生理[M].上海科学技术出版社,1986
    [94] 庄军年.棉花源库调节对体内光合产物运输分配及其产量的影响[D].硕士研究生论文,江苏农学院,1992.
    [95] 张宪政.植物组织中叶绿素含量测定[J].辽宁农业科技,1986,3:19-21.
    [96] Read, M S. Minimization of variation in the response to different protein of the Coomassie Blue G dyedinding: assay to protein [J]. Anal. biochem., 1981, 116:53-64.
    [97] 邹琦主编.植物生理学实验指导[M].北京:中国农业出版社,2000,58-59,54-55.
    [98] 孙群,李学俊.植物组织中超氧化物歧化酶活性测定[A].邹琦主编.植物生理学实验指导[M].北京:中国农业出版社,2000,163-165.
    [99] 华东师范大学.植物生理学实验指导[M].北京:人民教育出版社,1980.
    [100] 何钟佩.农作物化控实验指导[M].北京:北京农业大学出版社,1993.
    [101] 蔡可.植物生殖器官分化与碳水化合物及氨基酸的关系[J].植物生理学通讯,1964,(4):39-44.
    [102] 田长恩,梁承邺.多胺对水稻CMS系及其保持幼穗蛋白质、核酸和活性氧代谢的影响[J].植物生理学报,1999,25(3):222-227.
    [103] 郭振飞,樊剑鸣,卢少云,李宝盛,李明启.照光对玉米黄化幼苗超氧物歧化酶活性的影响[J].植物生理学报,1997,23(3):279-282.
    [104] 王文静,高松杰,梁月丽等.不同穗型小麦品种灌浆期碳氮代谢特点及其与源库关系[J].华北农学报,2003,18(2):29-32.
    [105] 许大全,沈允钢.光合产物水平与光合机构运转关系的探险讨[J].植物生理学
    
    报,1982,8(2).
    [106] 马海莲.转Bt基因抗虫杂交棉优化结铃模式及其生长发育与生理特征研究[D].保定:河北农业大学硕士研究生毕业论文,2003.
    [107] 潘家驹.陆地棉若干性状之间的遗传相关及遗传力的初步研究[J].江苏农业科学,1979,4.
    [108] 徐立华,钱大顺,陈祥龙,等.陆地棉品种间杂交棉铃发育的动态研究[J].棉花学报,1996,8(2):83-87.
    [109] 李新民.亚有限大豆源库关系的研究[J].大豆科学,1991,10(4):269-276.
    [110] 李少昆.关于光合速率与作物产量关系的讨论(综述)[J].石河子大学学报,1998增刊:117-126.
    [111] 潘波.春大麦生育期间光合性能的研究[D].北京:北京农业大学硕士研究生论文,1990.
    [112] 陈德华,陈源,杨长琴,等.氮肥与缩节胺配合对Bt棉源库特征和铃重的影响[J].棉花学报,2002,14(3):147-150.
    [113] 李妙,李民法.棉铃着生位置对棉花主要经济性状的影响[J].华北农学报,1994,9(2):29-32.
    [114] 李少昆.作物产量源库性能模式及其应用的探索(上、下)[J].新疆农垦科技,1999,(1):16-17;1999,(2):9-11.
    [115] 陈德华,肖书林,王志国,等.棉花超高产群体质量与产量关系研究[J].棉花学报,1996,8(4):199-203.
    [116] 蒋桂英,李蒙春,李刚,等.高产棉花群体冠层结构与干物质生产及产量的关系[J].新疆农业大学学报,2000,23(4):48-51.
    [117] 黄升谋.水稻源库关系与叶片衰老的研究[J].江西农业大学学报,2001,23(2):171-173.
    [118] 徐立华,李国锋,何循宏,等.转Bt基因抗虫棉“33B”的源库特征[J].江苏农业学报,2000,18(4):208-212.
    [119] 林毅,郑厚今,高用明,等.抗虫棉抗虫特性及产量研究[J].安微农业大学学报,1998,25(2):174-177.
    [120] 冯义军,张天真,潘家驹.4个陆地棉核雄性不育系的数量遗传学分析[J].棉花学报,1994,6(4):206-209.