不同品质类型小麦品种产量和品质性状对无机营养的响应特点
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机营养在作物干物质中所占的比重较小,但对作物所起的作用却不容忽视,尤其是氮、磷、钾对作物产量和品质的影响更为重要。鉴于对专用强筋小麦品种8901的产量和品质形成与施肥的关系及配方施肥研究较少,笔者于2002—2003年度在河北农业大学教学基地进行了2项试验研究:以专用强筋小麦品种8901—11(简称8901)、高产品种石4185(简称4185)、高蛋白品种河农341(简称341)、耐早高产品种河农859(简称859)为供试品种,探讨不同叶层氮素对品质形成所起的作用;利用氮、磷、钾三因素的旋转回归设计,以小麦产量和品质性状为目标,对8901的优化施肥技术方案进行了研究。主要结果如下:
     1.氮、磷、钾三因素对8901的产量和品质指标的影响各不相同。在影响产量和品质指标的3个因子中以氮肥的作用最大,尤其对蛋白质含量的影响最大。磷肥对产量的影响要远大于钾肥。在品质指标中,磷肥对湿面筋含量和沉降值的影响也大于钾肥,而对蛋白质含量和容重的影响则是钾肥大于磷肥。综合来看,对于产量和品质指标的作用大小顺序依次为氮>磷>钾。氮肥是影响产量和品质指标的首要因素。
     2.8901的最高产量氮磷钾配比为N:P_2O_5:K_2O=1:1:0.94。蛋白质含量最高的施肥配比为1.25:1:0.19,但对应的产量较低。钾肥在试验地的肥力条件下,对于稳定8901的产量有重要作用。高产的适宜施肥水平氮肥为中上水平,磷肥为中等水平,钾肥为偏上水平。在高蛋白含量下,氮肥为中等或高水平,氮肥对蛋白质含量的提高和维持起主要作用,磷钾肥起维持作用。增施磷钾肥可能因促进小麦光合产物的积累和向籽粒的转移,相对地降低了籽粒蛋白质含量。
     3.通过8901产量和品质指标的回归方程,进行多目标综合决策,用综合评分的方法,模拟筛选出不同的优化施肥量及配合方案多种,生产上应根据产品和肥料价格的变动应用。得分最高的方案为产量最高的方案。入选方案的施肥量范围为N 239.25~300 kg/hm~2,P_2O_5 150~300kg/hm~2,K_2O 112.5~225 kg/hm~2。
     4.品种8901、4185、859、341茎的氮含量为拔节期>开花期>完熟期。不同生育时期茎的氮含量均表现为氮磷配合>施氮>对照,茎的氮含量对施肥的反应不因品种而异。穗的氮含量因品种而异。8901对磷更敏感,施磷有利于8901叶片中的氮向籽粒运输。茎中的氮积累量在同一生育时期为氮磷配合>施氮>对照,各处理均在开花期达到最大值。穗的氮积累量在开花期为氮磷配合>施氮>对照。叶中的氮积累量在拔节期顶部1叶小于2叶,2叶>3叶>4叶,在开花期为1叶>2叶>3叶>4叶。同一品种的同一叶层的氮转移量均为氮磷配合>施氮>对照,不同处理的相对贡献并无明显差异。在对照处理下,8901的氮转移量在各品种中最高。在氮磷配合处理中,8901和341上部叶的氮转移能力较4185和859强,说明氮磷配合施用提高高蛋白小麦品种的产量和品质有其生理依据。
    
     5.在3种施肥处理条件下,4个小麦品种从顶部开始的第l、2叶的净光合
    速率,在从拔节到开花后20天期间大致上均为单峰型变化,最高值出现在挑旗
    至开花期间,而且这期间的净光合速率均保持较高值。第3叶则大约在拔节到
    挑旗和开花期出现2个高值,且净光合速率值低于1叶和2叶的。不同施肥处
    理间比较,各品种叶片净光合速率的最高值和平均值一般都以对照的最低,施
    氮和氮磷配合几的较高,说明了施肥特别是施用氮肥对提高光合功能的重要性。
    不同品种比较,在对照条件下,341的净光合速率在各品种中一般最高或较高,
    而在施氮和氮磷配合处理中该品种的净光合速率一般最低或较低。这种趋势在
    各品种净光合速率的平均值上表现得更为明显。这表明,品种341的光合功能
    对氮、磷肥的反应不敏感,而其他品种对施肥的反应敏感。
     6.与净光合速率的变化相似,3种施肥处理条件下各小麦品种顶部叶和中
    层叶的叶绿素和可溶性蛋白质含量的变化趋势基本相同,大致上都是在挑旗到
    开花期为顶点的单峰型变化,而下层叶则多为双峰型变化。不同处理比较,各
    品种各层叶的可溶性蛋白质含量及下层叶的叶绿素含量多为对照<施氮<氮磷
    配合,顶部叶和中层叶的叶绿素含量也以对照的最低,但施氮与氮磷配合的差
    异不大。各叶层的叶绿素含量与籽粒产量、穗数、穗粒数、穗粒重基本呈显著
    或极显著正相关,与籽粒蛋白质含量、容重等品质性状不存在显著的相关性。
    可溶性蛋白质含量与产量和品质指标的相关性因生育时期和叶层而异。
     7.4个品种间籽粒产量的差异不显著,而不同施肥处理间的籽粒产量差异极
    显著。容重、蛋白质含量和沉降值在品种间都达极显著差异,显示了不同品质
    类型小麦品种的品质形成特点。不同施肥处理间的蛋白质含量和沉降值也达显
    著或极显著差异,表明这些品质性状对施肥的反应敏感,通过施肥措施调控小
    麦的品质形成具有很大的潜力。
Mineral nutrients have small percentage in dry weight of crop plants, but they play important role in regulating crop plants, especially the effects of nitrogen, phosphorus and potassium on crop yield and quality. The relationship between grain yield and quality formation and fertilization, and the fertilization projects for the cultivar 8901-11 with strong gluten have not been reported, therefore, two field experiments were conducted on The Teaching and Demonstration Farm of Agricultural University of Hebei, Baoding, during 2002-2003. In one of the experiments, with four field-grown winter wheat cultivars, namely 8901-11 with strong gluten (simply 8901), Shi 4185 with high grain yield (simply 4185), Henong 341 with high grain protein content (simply 341) and Henong 859 with high grain yield and drought tolerance (simply 859), as experimental materials, the role of nitrogen from leaves of different layers on stems in grain yield and quality formation was studied. In another experiment, with a rotating regres
    sion design of three decisive variants, nitrogen, phosphorus and potassium, the superior fertilizing projects for 8901-11 was studied with grain yield and quality parameters as target functions. The main results are summarized as follows.
    1. The effects of the three elements, nitrogen, phosphorus and potassium on yield and quality parameters were different. Nitrogen was the element which had the largest effects on yield and quality, especially on grain protein contents. The effect of phosphorus on grain yield was much larger than that of potassium. For grain quality parameters, the effects of phosphorus on wet gluten content and sedimentation value were also larger than that of potassium, but the effects of potassium on grain protein content and test weight were larger than that of phosphorus. In general, the effects on grain yield and quality parameters were in the order of nitrogen> phosphorus>potassium. Nitrogen was the most important factor affecting yield and quality parameters.
    2. The ratio of the three elements for maximum grain yield of the cultivar 8901 was N:P2O5:K2O=1:1:0.94. The ratio for maximum grain protein content was N:P205:K2O=1.25:1:0.19, but the corresponding grain yield was lower. Potassium fertilizer had a role to stabilize the grain yield of 8901 under the fertility of the trial
    
    
    site. The suitable fertilizing levels for high yield were middle-high nitrogen, middle phosphorus and higher potassium. The nitrogen fertilizing level for high grain content was middle to high level. Nitrogen fertilizer played an important role in increasing and maintaining grain protein content, but phosphorus and potassium played only a part to maintain it. Increasing phosphorus and potassium fertilizers may accelerate photosynthate accumulation and translocation to grains, so that decreasing grain protein content relatively.
    3. Multiple target decision was conducted by synthesizing score method according to the regression equations for grain yield and quality parameters of 8901. Several superior fertilizing projects were selected for application in wheat production according to price fluctuations of wheat products and fertilizers. The project with highest score was that with highest grain yield. The range of fertilizing amounts of the selected projects was N 239.25-300 kg hm~2, P2O5 150-300 kg hm-2, and K2O 112.5-225 kg hm-2.
    4. The nitrogen content in stems of the cultivars 8901, 4185, 859, 341 in different growth stages was in the order of joining >anthesis> maturity stage. The nitrogen content in stems for different treatments were NP>N>CK (no fertilizing) during the period from jointing to maturity. The responses of stem nitrogen content to fertilization were not different among cultivars. The nitrogen content in spikes was different among cultivars. The cultivar 8901 was more sensitive to phosphorus than other cultivars. Phosphorus fertilization was beneficial to nitrogen translocation from leaf to grain in 8901. Nitrogen accumulation reached maximum at anthesis for al
引文
[1] 林葆,林继雄,李家康.长期施肥的作物产量和土壤肥力变化[J].植物营养与肥料学报,1994,1:6~18.
    [2] 刘振兴,杨振华,邱孝煊.肥料增产贡献率及对土壤有机质的影响[J].植物营养与肥料学报,1994,1:19~26.
    [3] 中国农业年鉴农业编辑委员会.中国农业年鉴[M].北京:中国农业出版社,1999.
    [4] 陈同斌.2000年农用化肥氮磷钾消费比例的研究.中国科学院地理研究所研究报告[R],1993.
    [5] 朱兆良,文启孝.中国土壤氮素[M].南京:江苏科技出版社,1992.
    [6] 朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1~6.
    [7] 朱兆良.中国土壤氮素肥力与农业中的氮素管理[A].见:沈善敏主编.中国土壤肥力[M].北京:科学出版社,1999,160~211.
    [8] 朱兆良.土壤中氮素转化研究中的几个问题[A].土壤圈物质循环研究导向论[C].1989.76~91
    [9] Mooney HA, Field C, Gulmon SL, et al. Photosynthetic capacity in relation to leaf position in desert versus field annuals[J]. Oecologia, 1981, 50:109~112.
    [10] Field C. Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program. Oecologia, 1989, 56: 341~347.
    [11] Gumonsl K.L, Chu CaoChun. The effects of light and nitrogen on photosynthesis, leaf characteristics, and dry matter allocation in the chaparral shrub Diplacu saurantiacus[J]. Oecologia, 1981, 49: 207~212.
    [12] 赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究[J].生态科学,1998,(2):37~42.
    [13] 李雁鸣,张建平,王焕忠,等.喷灌条件下高产冬小麦植株体内氮磷钾的时空分配特点[J].河北农业大学学报,2002,25(3):1~5.
    [14] 于振文,潘庆民,姜东,等.9000 kg/公顷小麦施氮量与生理特性分析[J].作物学报,2003,29(1):37~43.
    [15] 王旭东,于振文,王东.钾对小麦旗叶蛋白质水解酶活性和籽粒品质的影响[J].作物学报,2003,29(2):285~289.
    [16] 许轲,张洪程,戴其根,等.冬小麦不同生长类型群体超高产的中期栽培调控[J].作物学报,2002,28(6):760~766。
    [17] Hemantaranjan A, Garg OK. Effect of N fertilization on the senescence of wheat varieties [J]. Indian J, Plant Physiol., 1984, 28: 239~245.
    [18] Stròng M.J, Nicolas. varietal difference in natural protein composition of wheat[J]. Aust. J plant physiol., 1996, 23(6): 727~737.
    
    
    [19] 朱德群,朱遐龄,王雁,等.与小麦籽粒蛋白质有关的几项生理参数[J].作物学报,1991,17(2):136~144.
    [20] 卢少源,王增裕.小麦品质的遗传—生理研究概述[J].I.N素的吸收积累和同化.河北农业大学学报,1989,12(1):35~39.
    [21] Deehard EL, Busch RH. Nitrate reduetase assays as prediction test for crosses and lines in spring wheat[J]. Crop Sci., 1978, 18: 289~293.
    [22] 金善宝主编.中国小麦学[M].北京:农业出版社,1996,441.
    [23] Williams LE, Miller AJ. Transporters responsible the uptake and partitioning of nitrogenous solutes[J]. Ann. Rev. Plant Physiol. Plant Mol. Biol., 2001, 52: 659~688.
    [24] Daniel R, Andrade FH, Goudriaan J. Effect of phosphorus nutrition on tiller emergence in wheat[J]. Plant and Soil, 1999, 209: 283~295.
    [25] Johnson, VA. Wheat protein[A]. Proceeding of the international symposium on genetic control of diversity in plant[C]. Lahore, Pakistan, 1976.
    [26] Frey KJ. Dell LM. In alternate soureces of protein for animal production[C], 9, Nat, Acad. Sci., Washington D. C. 1973: 23~25.
    [27] 郑伟.小麦品质性状及其调优技术研究进展[J].耕作与栽培,2001(1):10~12.
    [28] Sosulski FW. Effect of moisture, temperature and, nitrogen of yield and protein quality of thatcher wheat[J]. Can. Plant Sci., 1966, 46: 583~588.
    [29] Campbell CA. Effect of temperature, nitrogen fertilization and moisture stress on yield, yield components, protein components, and moisture use efficiency of manitou spring wheat [J]. Can. Plant Sci., 1979, 59: 965~974.
    [30] 邢先贵,朱旭彤.优质小麦品种在不同栽培条件下的产量和品质表现[J].华中农业大学学报,1996,15(2):117~122.
    [31] 王光瑞.北方冬麦区小麦品质研究简报[A].见:全国小麦育种攻关协作组,河北省农作物学会合编.全国小麦品质改良研讨班资料选编[C].石家庄,1986,71~89.
    [32] 郑伟.小麦品质性状及其调优技术研究进展[J].耕作与栽培,2001(1):10~13.
    [33] Cox MC, Qualset CO, Rains DW. Genetic variation for nitrogen assimilation translocation in wheat. Ⅰ. Dry matter and nitrogen accumulation[J]. Crop Sci., 1985, 25:430~431.
    [34] Heithovt JJ, Croy LL. Maness NO, et al. Nitrogen partitioning in genotypes of winter wheat differing in grain N concentration[J]. Field Crops Res., 1990, 23: 133~144.
    [35] Loftier CM, Ruach TL, Bush RH. Grain and plant protein relationship in hard red spring wheat[J]. Crop Sci., 1985, 23: 119~144.
    [36] Van Larr HH. Goudriaan J. Van Keulen H (Eds). Simulation of crop growth for potential and water-limited production situations (as applied to spring wheat) [A], simulation report 27[R], CABO-TT, 1992, 72
    [37] 巴甫洛夫AH.禾谷类作物籽粒产量与蛋白质含量的关系[J].国外农业科技,1980(11):33~34.
    [38] B,M.提高小麦籽粒蛋白质含量的理论前提[J].麦类文摘.1983(2).
    
    11~13.
    [39] Batia CR, Rabson R. Bioenergetics considerations in cereal breeding for protein improvement [J]. Science, 1976, 194: 1418~1421.
    [40] 杨根海.用~(15)N示踪研究小麦品质Ⅰ.后期N肥对冬小麦产量和蛋白质含量的影响[J].北京农业大学学报,1986,12(1):39~45.
    [41] 李宗智.小麦品质的遗传改良[J].国外农学—麦类作物,1984(2):6~9.
    [42] 赵广方,张保明,王崇义.高产小麦氮素积累与产量和蛋白质含量的关系[J].麦类作物学报,2000,20(4):90~93.
    [43] 王震宇,小麦胚乳中蛋白质沉积的生理学基础[J].世界农业,1996(12):17-19.
    [44] 胡承霖.小麦籽粒蛋白质动态变化规律及其与产量关系的研究[J].河南职技师院学报,1990,18(3~4):117~125.
    [45] 李九星.小麦籽粒蛋白质积累动态的研究[J].河南农业大学学报,1991,25(4):366~371.
    [46] 王旭东,于振文,樊广华.钾素对冬小麦品质和产量的影响[J].山东农业科学,2000(5):16~18.
    [47] 姜丽娜,李春喜,代西梅,等.超高产小麦氮素吸收、积累及分配规律的研究[J].麦类作物学报,2000,20(2):53~59.
    [48] 张宝军,蒋纪芸.小麦籽粒品质及其影响因素分析[J].国外农学—麦类作物,1995(4):29~30.
    [49] Van Sanford DA, Macknown CT. Cultivar differences in nitrogen remobilization during grain fill in soft red winter wheat[J]. Crop Sci., 1987, 27: 295~300.
    [50] 刘晓冰,李文雄,周鹏.春小麦产量和蛋白质关系研究[J].东北农业大学学报,1996,27(2):116~123.
    [51] 董依平,李继云,李振声.不同小麦品种(系)利用氮素效率的差异以及有关机理研究[J].西北植物学报,1999,19(4):598~604.
    [52] 王树安.作物栽培学各论[M].北京:中国农业出版社,1995.
    [53] 郭绍铮.千斤小麦光合产物的积累、分配和运转[J].江苏农业科学,1981(1):8~14
    [54] 张继林,孙元敏,郭绍铮.高产小麦营养生理特性与高效施肥技术的研究[J].中国农业科学,1988,21(4):39~46
    [55] 黄德明,俞仲林,朱德锋.淮北地区高产小麦植株吸N及土壤供N特性[J].中国农业科学,1988,21(5):59~67
    [56] 王朝辉,田霄鸿,李生秀.冬小麦生长后期地上部分氮素的氮挥发损失[J].作物学报,2001,27(1):1~6.
    [57] 王姣爱,贾文兰.小麦品种与氮磷钾肥的综合效应研究[J].麦类作物,1999(1):53~55.
    [58] 张国平.小麦干物质积累和NPK吸收分配的研究[J].浙江农业科学,1984(5):222~228.
    [59] 高炳德.不同小麦品种营养特性的研究[J].华北农学报,1986,1(2):45~51
    [60] 陈振德,邹琦,程炳嵩.氮素对不同耐肥性小麦品种植株体内P、K分配状况的影响.土壤肥料,1993(4):24~27.
    [61] Feil B. The variables of new and old of winter wheat absorb and distribute nitrogen [J].
    
    Journal of Agronomy and Crop Science, 1989, 162(1): 49~56.
    [62] 宋志伟.K型杂种小麦干物质积累与NPK吸收规律[J].土壤通报,1995,26(5):216~218.
    [63] 宋志伟.K型杂种小麦对NPK的积累分配与转移规律的研究[J].土壤通报,1995,26(6):276~278.
    [64] 高平民.杂种小麦需肥规律的探讨[J].华北农学报,1995,10:127~132.
    [65] 齐天峰,吕守忠,于振文.不同施氮量对冬小麦吸磷特性和产量的影响[J].山东农业科学,1994(6):10~12.
    [66] 张文英,张庆江.冬小麦高产稳产的适宜氮磷营养基础及合理施肥技术[J].华北农学报,1993,8(3):76~81.
    [67] 化才宁,姚翠琴,李启光.氮磷配施对冬小麦籽粒品质的影响[J].西北农业学报,1992,1(2):77~80.
    [68] 于振文,余松烈.钾营养对冬小麦养分吸收、分配、产量形成和品质的影响[J].作物学报,1996,22(4):442~448.
    [69] 孙元敏,张继林,郭绍铮.NPK配合施用对小麦养分吸收和产量的影响[J].江苏农业科学,1993(2):1~4.
    [70] 黄德明.冬小麦矿质营养和施肥的研究,第2报.NPK肥对小麦养分吸收积累分配的影响[J].北京农业科学,1989(4):15~18.
    [71] 曹鸿鸣.覆膜小麦的NP营养特性与光合特性.山东农业大学学报,1988,19(2):59~66.
    [72] Read SM, Northcote DH. Minimization of variation in the response to different protein of the Coomassic Blue G dyedinding: assay for protein[J]. Anal. Biochem., 1981, 116: 53~64.
    [73] 赵世杰.叶绿体色素的定量测定[A].邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000,72~75.