不同熟性棉花品种器官建成及主要生理性状对播期的反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过不同的播期处理,以早熟品种中棉所30(中30)和中熟品种中棉所41(中41)为试验材料,从外部器官建成和内部生理两方面对不同熟性棉花品种的播期反应进行较为全面的研究,为建立棉花生育与温度关系的机理模型提供理论依据。
     研究结果表明,株高的增长动态可用Logistic方程拟合,两品种随播期的推迟,最终株高减小。第二播期中30在株高快速增长的时期积温效率最大,为0.0592cm·℃~(-1);第三播期最小,为0.0481cm·℃~(-1);中41则在第三播期积温效率最大,为0.0818cm·℃~(-1);第一播期最小,为0.0654cm·℃~(-1)。出叶速度符合直线方程,而叶面积用一元二次方程拟合较好。其结果两品种的出叶速度、叶面积均在第二播期最大,第三播期最小。蕾数的消长也符合正态分布,可用一元二次方程拟合。从蕾、铃数看,早熟品种中30蕾、铃的多少对播期的反应比较敏感,中熟品种中41的反应略微迟钝。
     在物质积累方面:营养器官的物质积累也可用Logistic方程拟合。其中茎枝干物质积累过程中第二播期两品种的积温效率最大,中30为0.030g·℃~(-1);中41为0.039g·℃~(-1)。叶干物质积累过程中,两品种在第二播期有最大的积温效率,中30为0.0352g·℃~(-1),中41为0.0335g·℃~(-1)。生殖器官中蕾的干物质积累无明显规律,铃的干物质积累呈线性增长。中30单株蕾的干物质积累从积累速度来看,第三播期>第二播期>第一播期。中41前两播期的蕾干物质积累较多,第三播期较少。单株铃的物质积累,中30第一播期和第二播期铃的物质积累相近,但均明显大于第三播期处理。中41则是第二播期>第三播期>第一播期。
     综合三个播期的物质分配规律,两品种茎枝百分比随着播期的推迟而下降,中41下降的速率比中30快。叶的比例中30是第一播期百分比最小,第二播期最大;中41叶中分配的物质随播期的推迟逐渐减少。中30生殖器官干物质分配从出苗至吐絮期三个播期相差不大;中41的生殖器官百分比随播期推迟呈逐渐增大的趋势。
     从生理特征方面看,棉花主茎叶片叶绿素、类胡萝卜素含量,中41均大于中30。三个播期两品种上述生理指标均于蕾期达最大值。两品种光合速率差别不大,均在第二播期有较好的光合优势。从氮代谢角度分析,中41全氮含量具有大于中30的趋势,第三播期尤为明显。从三个播期来看,全氮含量的最大时期均在开花期前。主茎叶片可溶性蛋白的含量两品种在棉花生育的前、中期差别不明显,但是到了后期中41的含量均大于中30,含量高峰均出现在蕾期阶段。从碳代谢角度分析,中41可溶性糖的含量多数时期明显高于中30。三个播期均是前期含量均高于后期,最大含量的时期随播期的推迟而提前。淀粉含量两品种变化趋势大致相同,均是前期较高。从不同播期来看,随着播期的推迟其含量的最大值减小。
     关于产量结构,其结果为:单株铃数,中30少于中41。中30第二播期单
    
    株铃数最多,第三播期最少;中41则随播期的推迟铃数减少。单铃重,中30
    大于中41。中30的铃重最大在第三播期,中41最大在第二播期,两品种均在
    第一播期最小。从衣分来看,中30在第二播期最大,第三播期最小;中41则
    随播期推迟而减小。产量结果为,籽棉产量中30第二播期>第三播期>第一播
    期;中41第二播期>第一播期>第三播期。皮棉产量,中30同籽棉产量,中
    41第一播期>第二播期>第三播期。
This experiment was conducted to study the responses of organ growth and development and physiological characters to varieties of different maturity with different sowing dates in cotton. There were two cotton varieties CCRI 30 (early maturity variety) and CCRI 41 (middle maturity variety) were used. The results of this study will be useful to setting up the mechannical simulation model of cotton growth and development.
    The results were as followed as: the Logistic recursive equation was used in the height of stem, the height decreased with the delay of sowing date. The greatest efficiency of accumulated temperature of CCRI 30 was 0.0592cm C-1' in the second sowing date of rapid growth period, the lowest of that was 0.0481cm C-1 in the third sowing date .To CCRI 41,the highest of the efficiency of accumulated temperature was 0.0818 cm C-1 in the third sowing date of rapid growth period, the lowest of that was 0.0654cm C-1 in the first sowing date .The linearity recursive equation was used in the rate of leaf emergence, and the y=ax2+bx+c recursive equation was used in the leaf area. The rate of leaf emergence and coefficient of leaf emergence of the two varities were the largest in the second sowing date, the smallest were in the third sowing date. The response of the quantity of bud and boll of CCRI 30 was sensitive in different sowing dates, but that of CCRI 41 was not.
    Accumulation dry matter of nutritional organ can use Logistic recusive equation to bewrite. The efficiency of cumulated temperature in accumulating of dry matter of stem and twig in the second sowing date' rapid growth period was the greatest, CCRI 30's was 0.030g C-1, CCRI 41's was 0.039g C-1 In the course of accumulating of dry matter of leaf, the trend was similar to that of stem and twig, CCRI 30's was 0.0352g C-1, CCRI 41's was 0.0335g C-1. the accumulating of dry matter of bud had no rules, but that of boll can use linearity recusive equation to bewrite. The speed of accumulation of bud in CCRI 30 was hightest in the third sowing date. The accumulation of dry matter of bud of CCRI 41 was more in the first and second sowing dates than that in the third sowing date. The accumulation of dry matter of boll of CCRI 30 was similar between the first and second sowing date, and that of the third sowing date was less. For CCRI 41, the accumulation of dry matter of boll was highest in the second sowing date.
    As to the allocation of dry matter of three sowing dates, the percent of stem and twig of the two varieties decreased with the delay of sowing date. The speed descend with the delaying
    
    
    of sowing date of CCRI41 was bigger than that of CCRI30. The percent of leaf of CCRI30 was the fewest in the first sowing date, and was the largest in the second sowing date. The percent of leaf of CCRI41 reduced with the delaying of sowing date. The percentage of allocated dry matter of reproductive organ of CCRI 30 was similar in three sowing dates. The percent of stem and twig of CCRI 41 decreased with the delaying of sowing date.
    On the aspect of physiological property, the chlorophyll and carotenoid content in
    function leaves of CCRI41 was higher than that of CCRI30 in three sowing dates. There were
    the most content of those chemichales in bud period. The net photosynthetic rate showed little
    difference in function leaves between the two varieties. The analyze about photosynthetic
    physiology was that there were advantage in the second sowing date in both varieties, this can
    offer feasibility for produce more organic compound. On the analyze of nitrogen metabolize,
    nitrogen content in function of CCRI41 had higher than that of CCRI30, especially in the third
    sowing date. Among three sowing dates, the period of the most nitrogen content was preceding
    anthesis. The soluble protein in function leaves in two varieties had little difference in prophase
    and metaphase of cotton growth period, but in anaphase of cotton growth period, CCRI41's was
    higher than CCRDO's. The period of the most content was bud period. To the analysis of carbon
    metabolize,
引文
[1] 王树安主编.作物栽培学各论[M].中国农业出版社,1995.
    [2] 中国农业科学院棉花研究所主编.中国棉花栽培学[M].上海科学技术出版社,1983.
    [3] 吴海燕,徐凤双.温度与作物[J].吉林农业,1998,(8):17.
    [4] 孙本普,李秀云,王勇.套春棉对棉花生态环境及生长;彭响的研究[J].生态学报,1997,17(4):426-435.
    [5] 丁宏,李民.棉花生长发育与气象要素关系研究初报[J].石河子科技,1998,(2):6-9.
    [6] 黄顶元,刘彩霞,赵红梅.棉花不同品种生育进程与温度关系的探讨[J].石河子科技,1996,(5、6):1-2.
    [7] O'kelly JC. Elongation of the cotton fiber[A]. In: loomis W E. (ed) Growth and differentiation in plants[M]. Iowa state college press, 1953, 55-68.
    [8] Baker DN, Lambert JR, Mckinion DM. GOSSYM: A simulator of cotton growth and yield[R]. South Corolina Agricultural Ex-periment Station Technical Bulletin, 1983: 1089.
    [9] HearnAB. OZCOT: a simulation model for cotton crop management[J]. Agricultural Systems, 1994, (44): 257-299.
    [10] Mutsaer JW. KUTUN: a morphogenetic model for cotton Go ssypium hirsutum L[D]. Doctoral Thesis. Agricultural University, 1982.
    [11] Jones JW, Brown LG, Hesketh J D.. COTCROP.. a computer model for cotton growth and yield[R]. Miss. Agr. Exp. Stn. Inf. Bull, 1979, (69): 117.
    [12] Jackson BS, Arking F.. Fruit growth in a cotton simulation model[A]. Proc Beltwide Cotton Prod Res Conf[C]. 1982, 61-64.
    [13] Lemmon H. Sigma+Cotton Model Brief User's Guide[R]. Remote Sensing and Mod-eling Laboratory, USDA-ARS, 1996.
    [14] 潘学标,韩湘玲,王延琴,等.棉花生长发育模拟模型COTGROW的建立Ⅱ发育与形态发生[J].生棉花学报,1999,11(4):174-181.
    [15] 刘文,王恩利.棉花生长发育模拟模型研究初探[J].中国农业气象,1992,3(6):10-16.
    [16] 潘学标,龙腾芳.棉花生长发育与产量形成模拟模型(CGSM)研究(J).棉花学报,1992,4(增刊):11-20.
    [17] 吴国伟,等.棉花生长发育模拟模型的研究[J].生态学报,1988,8(3):201-210.
    [18] 李秉柏,方娟.棉花生育期模拟模型的研究[J].棉花学报,1991,3(2):56-58.
    
    
    [19] 马新明,李秉柏,金之庆.棉花果枝、果节预测模型的探讨[J].棉花学报,1998,10(1):38-42.
    [20] Ritchie JT, Otter S. CERS WHEAT: A user oriented wheat yield model[R]. Johnson Space Center, Houston, TX: AGRISTARSPubl, 1984.
    [21] Stapper M, Harris HC. Assessing the productivity of wheat genotypes in mediterraean climate[J]. Using a Crop Res, 1989, (20): 129-152.
    [22] Van Heulen H, Seligman NG. Simulation of water use, nitrogen nutrition and growth of spring wheat crop [R]. Wageningen: PUDOC, 1987.
    [23] 刘贤赵,康绍忠,夏卫生,等.水分胁迫与光照条件对棉花干物质和产量形成影响的数学模型[J].应用生态学报,2002,13(9):1085-1090.
    [24] 朱艳,曹卫星,姜东,等.冬小麦适宜播期和播种量设计的动态知识模型研究[J].中国农业科学,2003,36(2):147-154.
    [25] 刘桃菊,李晖,唐建军,等.大麦发育模型的生理参数研究——Ⅰ.光照对大麦发育的影响[J].江西农业大学学报(自然科学版),2003,25(1):1-4.
    [26] 郑国清,张瑞玲,高亮之.我国玉米计算机模拟模型研究进展[J].玉米科学,2003,11(2):66-70.
    [27] 张敬涛,周丰锁,褚宏艳,等.大豆生育阶段动态模型的研究[J].大豆科学,2002,21(3):203-207.
    [28] 熊文兵,丁美花.水稻施肥田间试验设计及产量效应模型分析[J].广西农业科学,2003(2):33-35.
    [29] 刘洪,金之庆.油菜发育动态模拟模型[J].应用气象学报,2003,14(5):634-640.
    [30] 郑德明,姜益娟,朱朝阳.南疆棉花高产栽培干物质积累和生长发育动态研究[J].中国棉花,1999,(7):17-18.
    [31] 张旺锋,李蒙春.北疆高产棉花干物质积累与分配规律的研究[J].新疆农垦科技,1997,(6):1-2.
    [32] 陈德华.长江流域棉区高产棉花干物质生产与产量及群体构成的关系[J].中国棉花,2001,28(10):9-11.
    [33] 李蕾,娄春恒,文如镜,等.新疆不同密度下棉花干物质积累及其分配规律研究[J].西北农业学报,1996,5(2):10-14.
    [34] 李大跃.杂种棉光合物质生产及其源库关系[J].棉花学报,1991,3(2):27-34.
    [35] 肖荧南.不同栽培密度下棉花干物质积累的模拟[J].北京农业大学学报,1993,19(1):17-25.
    [36] 熊文兵,丁美花.水稻施肥田间试验设计及产量效应模型分析[J].广西农业科学,2003,(2):33-35.
    
    
    [37] 赵中华,刘德章,南建福.棉花各器官干物质分配规律的数学模型[J].华北农学报,1997,12(3):53-59.
    [38] 伍维模,郑德明,王自强.南疆高产栽培技术下陆地棉器官水平的干物质生产规律[J].塔里木农垦大学学报,2000,12(3):8-11.
    [39] 王有增,陈凤擦.河北低平原生态条件对棉花产量的影响[J].生态学杂志,1995,14(6):63-65.
    [40] 吕新,马俊杰.石河子气温对棉花产量影响的初步研究[J].石河子大学学报(自然科学版),1997,1(2):117-121.
    [41] 范万发.泾阳棉区棉花产量与光温因素的通径分析[J].中国棉花,1997,24(12):7-8.
    [42] 路文静.河北省棉花单产动态成因剖析[D].河北农业大学硕士学位论文,2002.
    [43] 刘静,翟朝勋.棉花产量及品质与气象条件的关系[J].新疆气象,1998,21(5):32-33.
    [44] 陈金湘,李曼瑞.气象因子对棉花产量和品级影响的灰色关联分析[J].棉花学报,1996,8(2):88-91.
    [45] 周关印,杨付新,付小琼,等.长江流域气候差异对棉花产量和纤维品质的影响[J].中国棉花,1996(10):15-18.
    [46] 朱秀良.气象要素对棉花产量的影响[J].中国棉花,1992,19(4):26-28.
    [47] 郭庆正,董合忠,刘勤红,等.短季棉与中熟棉花品种~~14C同化产物分配规律的比较研究[J].核农学报,1998,12(1):56-58.
    [48] 徐本生.夏棉干物质积累和氮磷钾吸收分配规律的研究[J].河南农业大学学报,1990,(1):34-38.
    [49] 邬飞波,李秀英,许馥华,等.短季棉与中熟棉生理特性的比较研究[J].棉花学报,2000,12(5):242-246.
    [50] 许馥华,吴吉祥,洪彩霞,等.播种期对四个短季棉品种产量和纤维性状的影响[A].中国棉花学会第10次学术研讨会论文集[C].1995,218-221.
    [51] 潘学标,韩湘玲,石元春.COTGROW-棉花生长发育模拟模型[J].棉花学报,1996,8(4):180-188.
    [52] 赵世杰.叶绿体色素的定量测定[A].邹琦.植物生理学试验指导[M].北京:中国农业出版社,2000,72-75.
    [53] 白宝璋,李雁鸣主编.植物生理学[M].北京:中国农业科技出版社,2001.
    [54] 盖钧镒.试验统计方法[M].北京:中国农业出版社,2000.
    [55] 游水生,王海为,廖祖辉.锥栗1年生播种苗的年生长规律[J].福建林学院学报,2003,23(2):102-105.
    [56] 韩锦峰,曹成舟.农作物体内的化学[M].河南人民出版社,1981,77-91.
    [57] B.A罗宾主编[苏联].棉花生理学[M].上海科学技术出版社,1983.
    [58] 张建华,余行杰,李迎春.温度对棉花产量结构及发育速度的可能影响[J].应
    
    用气象学报,1997,8(3):379-384.
    [59] 田晓莉,何钟佩,王保民.转Bt基因棉中棉所30不同开花期棉铃发育及产量构成因素的研究[J].棉花学报,2000,12(6):306-309.
    [60] 毋志检,常月英.中棉所30在晋中试种的表现[J].中国棉花,1999,07:37.
    [61] 张存信,杨学云,张连国,等.转Bt基因抗虫棉中棉所30[J].天津农林科技,2002,(1):24-25.
    [62] 李蒙春.地膜棉优质高产栽培生理生态研究[J].中国棉花,1987,(1):31-32.
    [63] 李蒙春,张旺峰,马富裕.高产棉花生育规律及生理指标的研究[J].石河子大学学报(自然科学版),1997,1(2):87-90.
    [64] 刘静,翟朝勋,张淑琴,等.夏地膜棉花花铃期气象条件与生长发育及干物质积累间的关系[J].中国农业气象,1999,20(2):42-45.
    [65] 李洪芹,刘永平,柴卫东,等.中棉所30在河北省株型栽培技术初报[J].中国棉花,1999,(6):17.
    [66] 徐立华,何循宏,李国锋,等.转基因抗虫棉“苏抗102”和“苏抗310”棉铃形成规律[J].江苏农业学报,2000,16(4):208-211.
    [67] 徐立华,钱大顺,陈祥龙,等.陆地棉品种间杂种苏杂16棉铃发育动态研究[J].棉花学报,1996,8(20):83-87.
    [68] 徐惠纯.棉铃发育规律的初步研究[J].山东农业科学,1987,(2):26-28.
    [69] 周可金,裴训武,江厚旺.不同开花期棉铃干物质积累规律研究[J].棉花学报,1996,8(3):145-150.
    [70] 田晓莉,杨培生,王保民,等.转Bt基因抗虫棉中棉30的碳氮代谢特征[J].棉花学报,2000,12(4):172-175.
    [71] 董志强.叶柄碳氮比作为施用氮肥生理指标的研究[J].中国棉花,1992,19(6):18-19.
    [72] 褚贵新,孙杰,李予霞,等.新疆特早熟棉区50年来棉花品种演替过程中氮素吸收和运转分配差异的研究[J].石河子大学学报(自然科学版),1999,3(增刊):9-14.
    [73] 郭香墨,李秀兰.短季转Bt基因抗虫棉—中棉所30[J].中国棉花,1998,25(7):26-27.
    [74] 田晓莉,杨培珠,段留生,等.转Bt基因抗虫棉源库关系的初步研究[J].棉花学报,1999,11(3):151-156.