杂交棉不同世代的利用价值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以转基因抗虫杂交棉农杂62F_1、农杂62F_2、农杂62F_3、H16F_1、H16F_2、H16F_3、H64F_1、H64F_2、H64F_3和对照常规棉品种泗棉三号为材料,比较研究杂交棉F_1、F_2、F_3的杂种优势。主要结果如下:
     1.杂交棉F_1的生育期和生长发育速度与F_2、F_3基本一致,株高、果枝数和成铃数总的趋势是F_>F_2>F_3>CK。F_1的株高和果枝数与相应的F_2、F_3无显著差异,而结铃数F_1与F_2、F_3差异显著,单株平均结铃数F_1为33.7个,F_2为31.2个,F_3为30.6个,F_1比F_2、F_3分别多2.5个和3.1个。F_2的伏前桃和伏桃的比率高于F_2、F_3(66.07%/61.69%/61.54%),F_2比F_1下降4.38%,与F_3相当。霜前花比率总的趋势是F_1>F_2>CK>F_3,农杂62F_1的霜前花率最高69.09%,F_1的平均霜前花比率为66.06%,比对照高4.75%,F_2的平均霜前花比率为62.37%,高于对照1.06%,F_3的平均霜前花比率为60.07%,低于对照1.24%,F_1的霜前花率比F_2、F_3分别高3.63%和6%。
     2.杂种不同世代生理方面研究表明,不同时期,杂种叶片叶绿素含量前期多,后期少,杂种叶片氮代谢前期强,后期弱,呈递减的趋势,不同世代组合子棉产量的多少与结铃期光合物质积累趋势一致;同一时期,叶绿素含量、氮代谢总的趋势是F_1>F_2>F_3>CK,开花初期F_1叶绿素a比F_2、F_3、CK分别高0.33μg/ml、0.77μg/ml和1.44μg/ml,F_1叶绿素b比F_2、F_3、CK分别高0.70μg/ml、0.75μg/ml,和1.83μg/ml。吐絮初期F_1叶绿素a比F_2、F_3、CK分别高0.99μg/ml、1.01μg/ml和1.44μg/ml,F_1叶绿素b比F_2、F_3、CK分别高0.46μg/ml、0.75μg/ml和1.43μg/ml。开花初期叶片中全氮F_1比F_2、F_3、CK分别高0.13%、0.20%和0.28%,而吐絮期F_1与F_2、F_3、CK差异不显著。
     3.F_2、F_3棉株的抗性存在明显的分离,经卡那霉素检验,F_1全部表现为抗虫,F_2、F_3分离出20%左右的非抗虫个体。大田调查棉株顶尖被害率和蕾铃被害率表明,F_2前期的抗性与F_1差不多,但后期抗性差,顶尖被害率和蕾铃被害率明显上升,蕾铃脱落率增加(6.21%/13.05%/17.91%),F_2比F_1蕾铃脱落率提高7%,F3比F_1蕾铃脱落率提高11.70%,F_3比F_2蕾铃脱落率提高4.86%,但
    
    与对照29.63%相比,F;减少蕾铃脱落23.42%,FZ减少蕾铃脱落16.58%,F3减
    少蕾铃脱落n.72%,说明种植抗虫杂交棉比种植非抗虫棉增产。
     4.杂种后代的产量分析表明,F:的平均皮棉产量为1296.3okg爪mZ,比对照增
    产252.45 kg飞mZ,平均竞争优势为27.56%。F:的平均皮棉产量为116s.6skg/hmZ,
    比对照增产154.80kg小mZ,平均竞争优势为1527%。F3的平均皮棉产量为
    川7.65kgz腼2,比对照增产103,50 kg爪mZ,平均竞争优势为10.240,0。F·、竞争优势
    大的,凡、F3的竞争优势也大,FZ、凡的衰退率也是成比例的,F:的平均优势衰退
    率为12.59%,F3的平均优势衰退率为17.62%,在试验材料中,农杂62的产量最
    高,竞争优势大,H16的产量最低,竞争优势小,而衰退率最大的是农杂62 FZ和
    F3,衰退率最小的是H16F:和F3。在产量构成主要因素中,成铃数对产量的贡献最
    大,平均贡献率为28.52%,其次是铃重为2.36%,衣分的贡献率很小,只有0.20%,
    Fl成铃数的贡献率为29.08%,FZ成铃数的贡献率为30.00%,F3成铃数的贡献率为
    30.08%,表明杂种的结铃优势强。
     5.杂种后代的纤维品质分析表明,F:、FZ、F3检测的5项纤维品质的总体平
    均数差异不显著,但FZ、F3个体之间差异较大。Fl的纤维比强度高于FZ、F3,FZ、
    F3麦克隆值偏粗,平均纤维整齐度F:比Fl好。变异系数最大的是麦克隆值,为
    8.82%,接近纤维长度的3倍,其次是比强度、伸长率,变异系数最小的是整齐度。
In this study, the transgenic anti-insect hybrid cottons varieties (including Nong Za-62F1, Nong Za-62F2, Nong Za-62 F3, H16F1, H16F2, H16F3, H64F1, H64F2, H64F3) and non-transgenic cotton (No.SiMian3) that is the check variety were investigated to compare F1, F2, and F3. The main results were as following:
    1. The developmental period and rate of hybrid cottons in FI were similar to that of in F2 and F3. Generally the tendency of plant height, the number of fruit branches and setting bolls were F1> F2> F3>CK. There were no significant difference on plant height and number of fruit branch between F1 and its offspring F2 and F3, but there were significant differences on total of mature bolls between F1 and its offspring F2 and F3. Mean of bolls per plant in F1, F2, F3 was 33.7, 31.2 , and 30.6, respectively. F1 had more 2.5, 3.1 bolls compared with F2, F3, respectively. The percentage of pre-hot summer bolls and hot summer bolls in FI was higher than that in F2 and F3, The percentage of pre-hot summer bolls and hot summer bolls in F1, F2, F3 were 66.07%, 61.69% and 61.54 %, respectively. The percentage in F2 was less 4.38% than that in F, and was similar to that in F3. The general tendency of the percentage of number flowers before frost stage to the total flowers was F1> F2 >CK> F3. The highest percentage of No
    ng Za-62F1 was 69.09%. The mean of percentage of F1, F2 and F3 were 66.06%, 62.37%, and 60.07%, respectively. The percentage of F1 was higher 4.75% than CK.
    2. Physiological researching in different generations of hybrid cotton showed that: (1) the chlorophyll content in leaves varied with time, and was higher at early growing stage and was lower at late growing stage. The nitrogen metabolize in leaves at early stage was stronger than that at late stage. The nitrogen metabolize decreased with passing time; (2) the yields in different generation was accordance with photosynthesis accumulation at boiling stage. The general tendency of chlorophyll content and nitrogen metabolize was F1> F2> F3>CK at the same stage. The chlorophyll a content of F1 had more 0.33μg/mK 0.77μg/ml and 1.44μg/ml compared with F2, F3,CK , respectively at primary blossom phase. The chlorophyll b content of FI had more 0.70(0, g/ml> 0.75μg/ml> and 1.83μ g/ml compared with F2, F3,CK, respectively at primary blossom phase. The chlorophyll a content of FI had more 0.99μg/mK 1 01μ g/ml and 1.44μg/ml compared with F2, F3,CK, respectively at primary opening boll. The chlorophyll b content of FI ha
    d more 0.46μg/mK 0.75μg/ml and 1.43μg/ml compared with F2, F3,CK , respectively at primary opening boll. The nitrogen content of F1 in leaves was higher 0.13%, 0.20% and 0.28% compared with F2, F3,CK, respectively at primary blossom phase, but there were no significant difference at primary opening boll.
    
    
    
    3. The resistance to insect in F2, F3 separated obviously. All plants in F1 selected by Knanmycin sulfate had resistance to insect, but about 20% plants in F2, F3 selected by Knanmycin sulfate showed no resistance. The percentage of damaged apexes of stem and squares and bolls in the field showed that the resistance to target insect in F2 at early growing stage was similar to that in FI, and decreased at late stage, the percentage of damaged apexes and squares and bolls increased obviously. The average percentage of boll shedding of F1, F2, F3 and CK were 6.21%, 13.05%, 17.91% and 29.63% respectively. And the percentage of boll shedding of F1, F2, F3 reduced by 23.423%, 16.58%, and 11.72%, respectively compared with CK. This was to say planting anti-insect hybrid cotton might increased yields.
    4, Yield analysis showed that average yield of F1 was 1296.30kg/ha, and increase by 282.45kg/ha compared with CK and its average competitive dominancy was 27.86%; Average yield of F2 was 1168.65kg/ha, increased by 154.80kg/ha compared with CK and its average competitive domain was 15.27%; Average yield of F3 was 1117.65kg/ha, increased 103.80kg/ha compared with CK and its average competitive dominancy was 10.24%. If F1 had higher competitiv
引文
[1] 曲健木.我国棉花杂种优势利用研究中几个问题的商榷.河北农业大学学报,1980,4(1):9~11.
    [2] MELL P H.Experiments in crossing for the purpose of improving the cotton fiber.Ala Agri ExpStn Bull, 1894:56.
    [3] 袁有禄,靖深蓉,邢朝柱,等.世界棉花杂种优势利用研究进展、问题与前景.中国棉花,2000,27(8):2~5.
    [4] 盛承发,王少丽,宣维健,等.抗虫杂交棉研究与应用进展.农业现代化研究,2002,23(5):347~351.
    [5] 邱新平.棉花杂种优势的研究与利用进展.中国棉花,2000,27(10):4~7.
    [6] 朱乾浩,俞碧霞.陆地棉品种间杂种优势利用进展.棉花学报,1995,7(1):8~11.
    [7] CHOMA C T, Surewicz W K, Carey P R. Unusual proteolysis of protoxin and toxin of Bacillus thuringienisis-structural implications. Eur J Biochem, 1990, 189:523~527.
    [8] Bing Tang Johnie N, Jenkins McCarty J C, Watson C E. F2 hybrids of host plant germplasm and cotton cultivars: □. heterosis and combining ability for lint yield and yield components. Crop Sci. 1993, 33:700~705.
    [9] 李育强,曾邵荣,扬芳荃,等.棉花雌雄异熟系和利用研究.中国棉花,1996,23(1):7~9.
    [10] 承泓良,何旭平,冷苏凤,邵正林,等.棉花开放花蕾性状的遗转及其在杂种优势利用中的应用.棉花学报,2000,12(1):49~52.
    [11] 张正圣,张凤鑫.陆地棉长花柱系的选育及杂种优势利用.中国农业科学,1999,32(4):27~33.
    [12] 王学德.陆地棉杂种优势及自交衰退的遗转分析.作物学报,1991,7(增):17~21.
    [13] 孙济中,刘金兰,张金发.棉花杂种优势的研究和利用.棉花学报,1994,6(3):135~139.
    [14] 韦国帧.陆地棉三系杂种优势及胞质遗传效应研究.湖北农业科学,1992,(8):1~5.
    [15] CHAUDHRY M R. Second generation of Bt cotton is coming. The ICAC Recorder, 2001, 19(1):3~8.
    [16] Meredith W R Jr. Yield and fiber-quality potential for second-generation cotton hybrids. Crop Sci, 1990, 30:1045~1048.
    [17] Meredith, W.R., Jr., and Bridge R.R., Heterosis and gene action in cotton. Gossypium hirsutum L. Crop Sci. 1972, 12:304~310。
    [18] Olvey J M. Performance and potential of F_2 hybrids. Proc. Beltwide Cotton Prod. Res. Conf., 1986, 101~102.
    
    
    [19] 邢以华,靖深蓉,占先合,等.棉花杂种二代利用价值的研究.中国棉花,1987,14(2):12~14.
    [20] 钱大顺,朱烨,张桂香,等.陆地棉F_2代杂种优势的研究与利用.江苏农业科学,1990,(5):10~11.
    [21] 孙志栋,朱军,裘尧军,等.陆地棉品种间杂种F_2代产量性状表现分析.中国棉花,1999,26(2):22~24.
    [22] 李熙远,吴红星,董彩虹.陆地棉品种间杂种F_2代优势研究及经济农艺性状的通径分析.棉花学报,1996,8(3):131~137.
    [23] 吴夫安,韩长胜,李泽田,等.转基因双抗杂交棉F_1、F_2代高产优质研究进展.中国棉花,2002,29(7):16~17.
    [24] 崔瑞敏,王兆晓,王志忠,等.陆地棉品种间F_2代及亲本主要经济性状的通径分析.中国棉花,2000,27(4):10~11.
    [25] 熊玉东,邱新平,丁子福,等.棉花多亲本杂交F_2群体产量性状的效应分析.棉花学报,1996,8(1):21~26.
    [26] 袁振兴,李育强,易善贵.湘杂棉F_2利用价值的研究.湖南棉花,1998,1、2(总第57期):18~19.
    [27] 袁有禄,张天真,靖深蓉,等.显性无腺体与隐性无腺体陆地棉品种间杂种二代利用研究.棉花学报,1999,11(1):11~19.
    [28] 郭旺珍,孙敬,郭玉芳,等.利用F_2转Bt基因抗虫杂交棉新策略.棉花学报,2001,13(4):200~203.
    [29] 崔瑞敏,闫芳教,王兆晓,等.转Bt基因杂交棉主要性状优势率分布研究.棉花学报,2002,14(3):162~165.
    [30] Gwyn J.J., Whitmore R.W. andBoeder V.G. Chembred acala cb 7, acala cb 1210, and cb 1233 F2 from hybrid cotton varieties. Proe, Beltwide cotton Prod. Res. Cont., 1992, 56.
    [31] Turcotte E.L.and Richard Percy G.. Evaluation of yield potential and fiber properties of 15 F_2 populations and their parents in pima cotton. Proc. Beltwide cotton Prod. Res.Cont., 1990, 69.
    [32] Weaver J. B., Jr.Hybrids produced very economically with transgenie cotton. Proc. Beltwide cotton Prod. Res. Cont., 1999 (1): 448~450.
    [33] 李育强,肖才升,杨春安.湘杂棉2号在长江流域的表现及推广应用前景.湖南省棉花学会第十七次学术讨论会论文集.钟涛主编,湖南科技出版社,2000,10:24~28.
    [34] Weaver J B Jr. Analysis of genetic double recessive completely male-sterile cotton. Crop Sci., 1968, 8(5):597~600.
    [35] 杨芳荃.湖南省杂交棉的研究与应用.棉花学报,1995,7(4):206~208.
    [36] Dever Bing J K,Gannawy J R. Relative fiber uniformity between parent and F_1 and F_2 generations in cotton. Crop Sci. 1992, (32):1402~1408.
    
    
    [37] Lyndon Schoenhals and Gannaway J.R.. Yield and quality determinations of F_1 and F_2 hybrids. Proc. Beltwide cotton Prod. Res. Cont., 1990, 69.
    [38] Bing Tang, Johnie Jenkins N., McCarty J.C., Watson C. E.. F_2 hybrids of host plant germplasm and cotton cultivars: Ⅱ. heterosis and combining ability for fiber properties. Crop Sci., 1993, 33:706~710.
    [39] 李增书,眭书祥.正反交抗虫杂交棉F_2性状差异研究初报.中国棉花,1999,26(1):13~14.
    [40] 靖深蓉,邢朝柱,袁有禄,等.抗虫杂交棉的选育与利用研究.中国棉花,1997,24(7):15~17.
    [41] 吴吉祥,朱军,许馥华,等.陆地棉F_2纤维品质性状杂种优势的遗传分析.棉花学报,1995,7(4):217~220.
    [42] 袁有禄,张天真,郭旺珍,等.棉花纤维品质性状的遗传稳定性研究.棉花学报,2002,14(2):67~70.
    [43] 王武,张献龙,聂以春.转基因抗虫组合F_2代群体农艺性状变异及其利用价值评估.棉花学报,2002,14(1):8~12.
    [44] 王孝纲,帅启荣,别墅,张教海,夏关章.转基因抗虫棉的研究利用与市场前景.中国棉花,2002,29(6):12~14.
    [45] CHOMA C T, Surewicz W K, Carey P R. Unusual proteolysis of protoxin and toxin of Bacillus thuringienisis-structural implications. Eur J Biochen, 1990, 189, 523~527.
    [46] CHAUDHRY M R. Economics of growing transgenic cotton. The ICAC Recorder, 2000, 18(1):7~11
    [47] 牛巧鱼译.澳大利亚将限制单价转基因棉的种植量.中国棉花,2001,28(6):19.
    [48] 谢道昕,范云六.苏云金芽孢杆菌(Bacillus thuringienisis)杀虫晶体蛋白基因导入棉花获得转基因植株.北京,中国科学(B)辑,1991,4:367~373
    [49] 郭三堆,倪万朝,徐琼芳,等.编码杀虫蛋白质融合基因和表达载体及其应用.1995,专利号:ZL95119563.8.C12 N 15~32.
    [50] 周冬生,吴振廷,王学林,等.土壤胁迫与温度对转Bt基因棉抗虫性的影响.棉花学报,2001,13(4):290~292.
    [51] 李付广,郭三堆,刘传亮,等.双价基因抗虫棉的转化与筛选研究.棉花学报,1999,11(2):106~112.
    [52] 王兆晓,闫芳教,崔瑞敏,等.转Bt基因棉杂交种一、二代产量及主要农艺性状研究.中国棉花,2002,29(8):20~21.
    [53] 张炳旺,唐学友,邹运鼎.可持续农业中棉花害虫管理的技术对策.中国棉花,2000,27(6):4~5.
    [54] 崔金杰,夏敬源.转Bt基因棉对棉铃虫抗性的时空动态.棉花学报,1999,11(3):141~146.
    [55] 陈松,吴敬音,周宝良,等.转Bt基因棉Bt毒蛋白表达量的时空变化.棉花学报,2000,
    
    12(4):189~193.
    [56] 刘海涛,郭香墨,夏敬源.抗虫杂交棉F_1代与亲本Bt蛋白表达量及抗性差异性研究.棉花学报,2000,12(5):261~263.
    [57] 芮昌辉,范贤林,郭三堆,等.双价基因(Bt+CpTI)抗虫棉对棉铃虫的杀虫活性及抑制生长作用.棉花学报,2001,13(6):337~341.
    [58] 肖松华,刘剑光,狄佳春,等.转基因抗虫棉抗虫性状的遗转研究.棉花学报,2001,13(6):351~355.
    [59] 李汝忠,沈发富,王宗文,等.转Bt基因抗虫棉抗虫性遗转研究.棉花学报,2001,13(5):268~272.
    [60] 袁小玲,唐灿明,张天真.转Bt+CpTI双价基因抗虫棉棉铃虫抗性的遗转分析.棉花学报,2001,13(6):342~345.
    [61] 郭香墨,张永山,刘海涛.转双价基因抗虫棉新品种中棉所41.中国棉花,2002,29(4):13~14.
    [62] 祝建波,王爱英,吴刚,等.转基因棉花的田间筛选技术研究.棉花学报,2000,12(5):230~233.
    [63] 马丽华,许红霞,胡育昌.转Bt基因棉卡那霉素田间快速检测法.中国棉花,2000,27(12):11~12.
    [64] 孙敬,唐灿明,袁小玲.利用卡那霉素间接鉴定法进行大规模的棉花转基因育种技术.棉花学报,2000,12(5):270~276.
    [65] 胡育昌,孙勤辛,王冕.抗虫棉田间去杂—卡那霉素喷雾法.中国棉花,2002,29(6):19.
    [66] 刘存敬,翟学军,王国印等.引进前苏联陆地棉种质资源主要农艺及经济性状鉴定研究.棉花学报,1998,10(2):68~73.
    [67] 刘剑光,肖松华,狄佳春等.Bt基因导入对棉花农艺性状的影响.中国棉花,2003,30(3):15~17.
    [68] 王献礼,丁胜.南疆长绒棉主要农艺性状的灰色关联度分析.中国棉花,2002,29(11):9~10.
    [69] 师维军.新疆陆地棉早熟性与农艺性状相关关系的研究.中国棉花,1998,25(4):17~18.
    [70] 秦素平,陈于和,毕艳娟.显性无腺体基因在不同陆地棉遗传背景下对棉花农艺性状的影响.河北农业技术师范学院学报,1998,12(2):10~14.
    [71] 董志强,何钟佩,翟学军.转Bt基因棉新棉33B叶片氮素代谢特征及其化学调控潜力.棉花学报,2000,12(3):113~117.
    [72] 田晓莉,杨培珠,王保民,等.转Bt基因抗虫棉中棉所30的碳、氮代谢特征.棉花学报,2000,12(4):172~175.
    [73] 聂以春,刘金兰,夏松波.棉花杂种一代和二代SOD酶和POD酶活性及光和特性的研究初报.棉花学报,1994,6(3):146~150.
    [74] 徐荣旗,刘俊芳.棉花杂种优势与几种生理生化指标的相关性.华北农学报,1996,11(1):76~80.
    
    
    [75] Elizabeth Edens R., Steve Slinsky, James Larson A.. Economic analysis of genetically engineered Bt cotton for tobacco budworm and bollworm control. Proc. Beltwide cotton Prod. Res.Cont., 1998, 380~384.
    [76] 张天真,靖深蓉,金林,等主编.杂交棉选育的理论与实践.北京:科技出版社,1998,10:57~58.
    [78] 潘家驹主编.棉花育种学.北京,中国农业出版社,1998,8:150~153.
    [79] 俞敬忠.棉花高产优质育种问题探讨.棉花,1979,(5):1~5.
    [80] Kerr, T. Yield components in cotton and their interrelationship with fiber quality. Proc. Beltwide cotton Prod. Res.Cont., 1966, 242~245.
    [81] 陈仲方.棉花产量结构模式的研究极其在育种上应用的意义.作物学报,1981,7(4):233~239.
    [82] 周有耀.论棉花的产量因素.北京农业大学学报,1986,12(3):289~274.
    [83] Worly. S. T. et al. Ontogenetic model of cotton yield. Crop Sci. 1976, 16(1):30~34.