1. [地质云]滑坡
采用准经典轨线方法研究碰撞反应的内能态分布和矢量相关性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在原子与分子碰撞反应中,反应的矢量和标量性质具有同等重要的意义,反应的矢量性质揭示了反应的立体动力学信息。只有把标量和矢量性质结合起来才能给出一个完整的反应动力学图像。近年来,逐步发展起来的立体动力学以研究反应过程中的矢量相关为主,针对反应物与产物矢量相关性研究在实验和理论上都取得了很大的进步。准经典轨线理论是研究分子反应立体动力学的重要方法之一。本文采用准经典轨线理论对Ca+RBr(R=CH_3,C_2H_5,n-C_3H_7),N+NO,N+O_2,C+NO几个典型反应体系的立体动力学进行了深入的理论研究。
     本论文的引言部分简要介绍了分子反应动力学以及立体动态学的发展和研究现状,同时介绍了势能面的知识。第1章介绍了准经典轨线计算理论方法,第2章介绍了反应中矢量相关性理论方法的经典处理。
     第3章采用准经典轨线方法研究了反应Ca+RBr→CaBr+R(R=C_2H_5,n-C_3H_7)产物CaBr的内能态分布。研究表明,随着碰撞能增加,可资用能分配到产物的平动能和转动能增加,而分配到振动自由度的比例减小,分配到产物CaBr的振动自由度的比例随碰撞能的增加而减小,这归因于两条反应路径(直接反应和迁移相碰)之间竞争。第4章采用准经典轨线方法研究了该反应体系的矢量性质,准经典轨线计算产物的转动取向与实验结果符合得很好,产物的转动角动量不仅被取向而且被定向,同时还发现产物的取向程度随着基团R的增加而减弱。在论文的第5-7章采用准经典轨线方法研究了三个反应体系(N(~4S)+O_2(X~3∑_8~-)→NO(X~2∏)+O(~3P),N(~4S)+NO(X~2∏)→N_2(X~3∑_8~-)+O(~3P)和C(~3p)+NO(X~2∏)→CN(X~2∑~+)+O(~3P))的转动取向和矢量相关,这几个体系对于理解大气中NO的燃烧具有重要意义。对这些反应体系的研究表明,产物的转动角动量不仅取向而且定向,此外,产物的定向方向还与碰撞能有关,这几个反应都存在两个竞争的反应路径,因此具有比较复杂的反应过程。采用瞬时碰撞模型对这几个反应的立体动力学结果进行了分析和讨论。
In order to understand the dynamics of atom and molecule collision reaction fully, it is important to study not only its scalar properties, but also its vector properties. The vector property of chemical reaction can provide valuable information about chemical reactive stereodynamics. In recent years, stereodynamics, focused on the research of correlation of angular momentum and other vectors in the process of reaction, was developed and has made a great achievement in both theories and experimental methods. Only by understanding together the above properties can the fullest picture of the scattering dynamics emerge. Quasiclassical trajectory (QCT) method is one of the most important ways to investigate molecular reaction dynamics. In this thesis, the stereodynamics of several typical reaction system including Ca+RBr(R=CH_3, C_2H_5, n-C_3H_7), N+NO, N+O_2 and C+NO reactions have been studied using the QCT method.
    The outline of the molecular reaction dynamics and stereodynamics, together potential energy surface (PES) of reaction systems are given in introduction section. The related theories of QCT and vector correlation are introduced in chapter one and two, respectively.
    The internal state distribution of product CaBr in the reactions Ca+RBr→CaBr + R (R= C_2H_5, n-C_3H_7) are studied using QCT method based on the extended LEPS PES in chapter 3. Research shows that the fractional energies disposed into translation and rotation of the CaBr product increase, accordingly vibrational fraction decreases as the collision energy increases. This result can be attributed to two competitive reactive pathways existing during the reaction. Vector properties about these reaction systems were studied in chapter 4. The QCT calculated rotational alignment of product is accord to the experimental results. The product angular momentum vector is not only aligned, but also oriented along the -y axis and the alignment degree of product become weak as the radical R increases. In chapter 5-7, the vector correlation and product rotational alignment are investigated using QCT method based multi-body expansion analytical PESs for three reaction systems ((N(~4S)+O_2( X~3Σ_g~- )
    →NO(X~2Π)+O(~3P), N(~4S)+NO(X~2Π)→N_2( X~3Σ_g~-)+O(~3P), C(~3P)+NO(X~2Π)→CN(X~2Σ~+)
    +O(~3P))). The three reaction systems play an important role for understanding of the NO reburning. The research shows that the product rotational angular momentum vector is aligned and oriented, the direction of orientation depends on the collision energy. These
引文
[1] Bernstein R B. Chemical dynamics via molecular beam and laser techniques. Oxford: Clarendon Press, 1982.
    
    [2] Levine R D, Bernstein. R. B. Molecular reaction dynamics. New York: Qxford University Press, 1974.
    
    [3] Levy M R. Dynamics of reaction collision in progress in reaction kinetics. Vol. 10, Jennings K R, Cundall. R. B. Eds., Oxford: Pergamon Press, 1979.
    
    [4] Brooks P R, Hayes. E. F. State to state chemistry. ACS Symposium Series 56, Washington, D. C: American Chemical Society, 1977.
    
    [5] Liu X H, Lin J J, Harich S A et al. A quantum state-resolved insertion reaction: O(~1D)+H_2(j=0)→ OH(~2Π, v, N)+H(~2S). Sciences, 2000, 289: 1536-1538.
    
    [6] F R Brooks, Reactions of oriented molecules: Molecules can be oriented in molecular beams and their reactions show some unexpected steric effects. Science, 1976, 193: 11-14.
    
    [7] Yuh H J, Dagdigian P J. Spin-orbit effects in chemical reactions: The reaction of spin-orbit state- selected Ca(~3P_J~0) with Cl_2, Br_2, and CH_3Cl. J. Chem. Phys., 1984, 81 (5) : 2375-2384.
    
    [8] Menzinger M. Electronic Chemiluminescence in Gases, in "Advance in Chemical Physics " ,Vol. XLII, Lawley K P, Ed. 1980.
    
    [9] Prisant M G, Rettner C T, Zare R N. Dependence of product alignment on product vibration for the Ca+F_2 chemiluminescent reaction. Chem. Phys. Lett., 1982, 88(3): 271-274.
    
    [10] Eyring H, Polanyi M. Z. Phys. Chem. B, 1931, 12: 279-311.
    
    [11] Schatz G C, Bowman J M, Kuppermann A. Exact quantum, quasiclassical, and semiclassical reaction probabilities for the collinear F+H_2→FH+H reaction. J. Chem. Phys., 1975, 63(2): 674-684.
    
    [12] Truhlar D G, Muckermanin T. In Physics of Atoms and Molecules, Ed. R. B, Bernstein, Plenum Press, New York, 1979.
    
    [13] Karplus M, Porter R, Sharma R D. Exchange Reaction with Activaton Energy I. Simle Barrier Potential for (H, H_2). J. Chem. Phys., 1965, 43(9): 3259-3287.
    
    [14] Doll J D. Semiclassical theory of atom-solid surface collisions: Elastic scattering. Chem. Phys., 1974, 3(2): 257-264.
    
    [15] Miller W H. Dynamics of Molicular Collisions Part B, Plenum Press, New York, 1976.
    
    [16] Wall F T, Hiller L A, Mazur J. Statistical Computation of Reaction Probabilities, Π. J. Chem. Phys., 1961, 35(1): 1284-1289.
    
    [18] Bunker D L, Monte Carlo Calculations. IV. Further Studies of Unimolecular Dissociation. J. Chem. Phys., 1964, 40(7): 1946-1957.
    [19] Muckerman J T. Classical dynamics of the reaction of fluorine atome with hydyogen molecules. HI. Hot-atom reaction of F with HD. J. Chem. Phys., 1972,57(8): 3388-3396
    [20] Neumark D M, Wodtke A M, Robinson G N et al. Molecular beam studies of the F+H_2 reaction. J. Chem. Phys., 1985, 82(7): 3045-3066.
    [21] Neumark D M, Wodtke A M, Robinson G N et al. Molecular beam studies of the F+D_2 and F+HD reactions. J.Chem. Phys., 1985, 82(7), 3067-3077.
    [22] Bernstein R B, Truhlar D R, Levine R D. Crossed molecular beam study of the reaction O(~3P)+C_2H_2. J. Chem. Phys., 1987, 91(9): 5365-5373.
    [23] Fano U, Macek H H. Impact Excitation and Polarization of the Emitted light. Rev. Mod. Phys., 1973, 45(4): 553-573.
    [24] Case D A, Herschbach D R. Statistical theory of angular momentum polarization in chemical reactions. Mol. Phys., 1975, 30: 1537-1564.
    [25] Wang M L, Han K L, He G Z. Product rotational polarization in the photoinitiated bimolecular reaction A+ BC→AB+ C on attractive, mixed and repulsive surfaces. J. Chem. Phys., 1998, 109(13): 5446-5454.
    [26] Han K L, He G. Z, Lou N Q. Comparison of the dynamics of the reactions of Ca ground and metastable atom with CH2Cl2 and CHCl3. Chera. Phys. Lett., 1991, 178(5,6): 528-532.
    [27] Orr-Ewing A J, Zare R. N. Orientation and alignment of reaction products. Annu. Rev. Phys. Chem., 1994, 45: 315-366. Loesch H J. Orientation and alignment in reactive beam collisions: recent progress. Ibid, 1995, 46: 555-594.
    [28] Kramer K H, Bernstein R B. Focusing and orientation of symmetric-top molecules with the electric six-pole field. J. Chem. Phys., 1965, 42(2): 767-773.
    [29] Loesch J, Rernscheid Z. Brute force in molecular reaction dynamics: A novel technique for measuring steric effects. J. Chem. Phys., 1990, 93(7): 4779-4790.
    [30] Kastler A. J. Phys. Radium., 1950, 11: 225-232.
    
    [31] Drullinger R E, Zare R N. optical pumping of molecules. J. Chem. Phys., 1969, 51(12): 5532-5542.
    [32] Feldman D L, Lengel R K, Zare R N. Multiphoton ionization: A method for characterizing molecular beams and beam reaction products. Chem. Phys. Lett., 1977, 52(3): 413-417.
    [33] Rettner C T, Zare R N. Effect of atomic reagent approach geometry on reactivity: Reactions of aligned Ca(~1P_1,) with HCl, Cl_2, and CCl_4. J. Chem. Phys., 1982, 77(5): 2416-2439.
    [34] Ding G W, Sun W Z, Yang W S et al. Effects of reagent orbital alignment on product vibrational distributions of the chemiluminescent reaction Ca(~1P)+CH_3I. Chem. Phys. Lett. , 1997, 265: 392-398.
    [35] Hoffrneister M, Schleysing R, Loesch H J. Molecular beam study of steric effects in the reaction K+HF(v=1, J==2)→ KF+H. J. Phys. Chem., 1987, 91(21): 5441-5445.
    [36] Han K L. Optical preparation of oriented and aligned reagents. Phys. Rev. A, 1997,56(6): 4992-4995.
    [37] Hus D S Y, McClelland G M, Herschbach D R. Molecular beam kinetics: Angle-angular momentum correlation in reactive scattering. J. Chem. Phys., 1974, 61(11): 4927-4928.
    [38] Hus D S Y, Herschbach D R. Polarization of Product Rotational Angular Momentum. Faraday Discuss. Chem. Soc., 1973, 55: 116-119.
    [39] Hus D S Y, Weinstein N D, Herschbach D R. Rotational Polarization of Reaction Products: Analysis of Electri.c Deflection Profiles. Mol. Phys., 1975, 29: 257-278.
    [40] Jonah C D, Zare R N, Ottinger C. Cross-beam chemiluminescence of some group Ⅱa metal oxides. J. Chem. Phys., 1972, 56(1): 263-274.
    [41] Hennessy R J, Ono Y, Simons J P. A crossed molecular beam study of the chemiluminescent reaction atomic xenon (~3P_(2.0))+cyanogen bromide→atomic xenon (~1S_0)+atomic bromine+cyanogen radical (B~2∑~+). Chem. Phys. Lett., 1980, 75: 47-51.
    [42] Johnson K, Peace R, Simons J P. Chemiluminescence polarization measurements under supersonic beam-gas, conditions. Mol. Phys., 1984, 52 (4): 955-968.
    [43] Tyndall G W, Vries M S de, Cobb C Let al. Product rotational alignment in the excitation transfer reaction Ar(~3P_2)+N_2→Ar+N_2(C ~3∏_u). J. Chem. Phys., 1987, 87(10): 5830-5839.
    [44] Menendez M, Garay M, Verdasco E et al. Collision energy and product polarization effects in the Ca~*(~1D_2)+HCl→CaCl~*(A, B)+H reaction. J. Chem. Soc. Faraday Trans., 1993, 89(10): 1493-1499.
    [45] Ding G W, Yang W S, Sun W Z et al. The product polarization of chemiluminescent reactions of orbital aligned Ca(~1P_J) with CH_3I and C_2H_5I. Chem. Phys. Lett., 1994, 220: 1-6.
    [46] Yang W S, Ding G W, Xu D L et al. The chemiluminescent studies of the orbital aligned Ca(~1P_1) with CH_(4-n)Cl_n (n=1, 2, 3, 4) reactions. Chem. Phys., 1995, 193: 345-350.
    [47] 詹际平,碱土金属原子的动态立体化学:(博士学位论文),大连:大连化学物理研究所,1997.
    [48] Wang M L, Han K L, Cong S Let al. Rotational alignment from the Sr(~3P_J)+CH_2ClI chemiluminescent reaction. Chem. Phys., 1998, 238: 481-485.
    [49] Engelke F, Meiwes-Broer K H. Rotational polarization of product molecular: Crossed laser-molecular-beam studies of Ca~*+HF and Ca+F_2 Chem. Phys. Lett., 1984, 108(2): 132-137.
    [50] Li R J, Han K L, Li F E et al. Rotational alignment of product molecules from the reactions Sr+CH_3Br, C_2H_5Br, n-C_3H_7Br, I-C_3H_7Br by means of PLIF, Chem. Phys. Lett., 1994, 220: 281-287.
    [51] Brouard M, Gatenby S D, Joseph D M et al. The H+N_2O→OH (~2∏_Ω,v', N') +N_2 reaction: OH rotational angular momentum polarization. J. Chem. Phys., 2000, 113(8): 3162-3172.
    [52] Brouard M, Lambert HM, Rayner S P et al. Product state resolved stereodynamics of reaction H(~2S)+CO_2→OH(X~2∏_(3/2); v=0, N=5)+CO(~1∑~+) Mol. Phys., 1996, 89(2): 403-423.
    [53] Brouard M, Burak T, Hughes D W et al. Product state resolved stereodynamics: Rotational polarization of OH(~2∏; v', N', Ω, f ) scattered from the reaction, H+CO_2→OH+CO. J. Chem.??Phys., 2000, 113(8): 3173-3180.
    [54] Alexander A J, Brouard M, Rayner S P et al. Product state resolved stereodynamics. O(~1D_2)+HCl→OH(X~2∏_(1/2); v:4, N=6)+Cl(~2P_J). Chem. Phys., 1996, 207: 215-226.
    [55] Alexander A J, Aoiz F J, Brouard M et al. An experimental and quasiclassical study of the product state resolved stereodynamics of reaction O(~1D_2)+H_2(v=0)→OH(X~2∏_(3/2); v=0, N,f)+H. Chem. Phys. Lett., 1996, 262, 589-597
    [56] Orr-Ewing A J, Simpson W R, Kandel S A et al. Scattering angle resolved product rotational alignment for the reaction of Cl with vibrationally excited methane. J. Chem. Phys., 1997, 106(14): 5961-5971.
    [57] Rakitzis T P, Kandel S A, Lev-On T et al. Differential cross-section polarization moments: Location of the D.-atom transfer in the transition state region for the reactions Cl+ C_2D_6→DCl(V'=4, J'=1)+C_2D_5 and Cl+CD_4. J. Chem. Phys., 1997, 107(22): 9392-9405.
    [58] Simpsom W R, Orr-Ewing A J, Kandel S A et al. Core extraction for measuring state-to-state differential cross sections of bimolecularreactions. J. Chem. Phys., 1995, 103(17): 7299-7312.
    [59] Simpsom W R, Orr-Ewing A J, Zare R N. State-to-state differential cross sections from photoinitiated bulb reactions. Chem. Phys. Lett., 1993, 212: 163-171.
    [60] Brouard M, Duxon S, Simons J P. The stereochemistry of the O(~1D) + N_2O→NO+NO reaction via velocity-aligned photof ragment dynamics. J. Chem. Phys., 1992, 97(10): 7414-7422.
    [61] Kim H L, Wickramaaratchi M A, Hall G E. Reactions of velocity-aligned atoms probed by Doppler profiles:H+O2→OH+O. J. Chem. Phys., 1994, 101(3): 2033-2050.
    [62] Simpson W R, Rakitzis T P, Kandel S A et al. Reaction of Cl with vibrationally excited CH_4 and CHD_3: State-to-state differential cross sections and steric effects for the HCl product. J. Chem. Phys., 1995, 103(17): 7313-7335.
    [63] Simpson W R, Rakitzis T P, Kandel S A et al. Picturing the Transition-State Region and understanding Vibrational Enhancement for the Cl+CH_4→HCl+CH_3 Reaction. J. Phys. Chem. A, 1996, 100(19): 7938-7947.
    [64] Chem M D, Wang M L, Hart K L et al. Theoretical studies of scattering-angle resolved product rotational alignment for the reaction of Cl with vibrationally excited methane. Chem. Phys. Lett., 1999, 301: 303-308.
    [65] Noda C, Zare R N. Dynamics of kinematically constrained bimolecularreactions having constant product recoil energy. J. Chem. Phys., 1987, 86(7): 3968-3977.
    [66] Hartree W S, Simons J P. Angular momentum disposal and product rotational alignment in kinematically constrained reactions. J. Chem. Soc. Faraday Trans., 1990, 86(1): 17-20.
    [67] 韩克利,何国钟,楼南泉.瞬时碰撞反应模型.化学物理学报,1989,2(5):323-332.
    [68] Safron S A, Weinstein N D, Herschbach D R et al. Transition State Theory for Collision Complexes: Product Translational Energy Distribution. Chem. Phys. Lett., 1972, 12: 564-568.[69] Mcclell G M, Herschbach D R. Impulsive Model for Angular Momentum Polarization in Chemical Reactions. J. Phys. Chem., 1987, 91(21): 5509.
    [70] Prisant M G, Rettner C T, Zare R N. A direct interaction model for chemiluminescent reactions. J. Chem. Phys., 1984, 81(6): 2699.
    [71] 李润君,韩克利,李芙萼等.用瞬时碰撞模型处理化学反应产物的转动取向.化学物理学报,1993,6(1):1-5.韩克利,徐大力,何国钟等.分子束与激光束反应动态学.化学物理学报,1998,11(1),1-9
    [72] Levine R D, Bernstein R B. Molecular Reaction Dynamics and Chemical Reactivity. Oxford U.P., New York, 1987.
    [73] Pollack E, Wyatt R E. Semiclassical determination of adiabatic barriers on a three-dimentional potential energy surface. J. Chem..Phys., 1983, 78(7): 4464-4476.
    [74] Levine R D, Bernstein R B. Opacity analysis of steric requirements in elementary chemical reactions. Chem. Phys. Lett., 1984, 105(5): 467-485.
    [75] Evans G T, Kleel E V, Stolte S. Chemical reaction dynamics: combination of two models. J. Chem. Phys., 1990, 93(7): 4874-4883.
    [76] Orr-Ewing A J. Orientation dependence of F+H_2 and H+F_2 reactions using the line-of- centres model with angle-dependent collision diameters and barrier heights. J. Chem. Soc. Faraday Trans., 1993, 89(10): 1481-1486.
    [77] Orr-Ewing A J. Dynamical stereodynamistry of bimolecular reactions.J. Chem. Soc. Faraday Trans., 1996, 92(6): 881-900.
    [78] Sharer N E, Orr-Ewing A J, Zare R N. Beyond State-to-State Differential Cross Sections: Determination of Product Polarization in Photoinitiated Bimolecular Reactions. J. Phys. Chem., 1995, 99(19): 7591-7603.
    [79] Aoiz F J, Brouard M, Enriquez P A. Product rotational polarization in photon-initiated bimolecular reactions. J.Chem. Phys., 1996, 105(12): 4964-4982.
    [80] Miranda M P de, Clary D C. Quantum dynamical stereochemistry of atom-diatom reactions. J. Chem. Phys., 1997, 106(11): 4509-4521.
    [81] Hijazi N H, Polarqi J C. Magnitude and orientation of rotation in exchange reactions A+BC→ AB+C~*. J. Chem. Phys., 1975, 63(5): 2249-2250.
    [82] Hank L, He G Z, Lou N Q. Effect of location of energy barrier on the product alignment of reaction A+BC. J. Chem. Phys., 1996, 105(19): 8699-8704.
    [83] Wang W L, Han K L, He G Z et al. Product Rotational Polarization in Photo-initiated Bimolecular Reactions A+BC: Dependence on the Character of the Potential Energy Surface for Different Mass Combinations. J. Phys. Chem. A, 1998, 102(50): 10204-10210.
    [84] Wang W L, Han K L, He G Z. Product rotational polarization in the photoinitiated bimolecular reaction A+BC→AB+C on attractive, mixed and repulsive surfaces. J. Chem. Phys., 1998, 109(13): 5446-5454.[85] Chen M D, Han K L, Lou N Q. Theoretical studies of product polarization and state distributions of the H+HCl reaction. Chem. Phys., 2002, 283: 463-472.
    [86] Zhang L, Chen M D, Wang L M et al. Product rotational polarization: Stereodynamics of the reaction Cl (~2P_(3/2))+CD_4(v=0, j=0)→DCl(v'=0, j'=1)+CD_3. J. Chem.. Phys., 2000, 112 (8):3710-3716.
    [87] Chen M D, Han K L, Lou N Q. Theoretical study of stereodynamics for the reactions Cl+H_2 /HD/D_2. J. Chem. Phys., 2003,118(10): 4463-4470.
    [88] Aoiz F J, Brouard M, Herrero V J et al. Product rotational alignment. The stereodynamics of the F+H_2 reaction. Chem. Phys. Lett., 1997, 264: 487-494.
    [89] Alexander A J, Aoiz F J, Brouard M et al. Product state-resolved stereodynamics: quasiclassical study of the reaction O(~1D)+HD→OH(OD)(v', j')+D(H). Chem. Phys. Lett., 1996, 256: 561-568.
    [90] Alexander A J, Aoiz F J, Banares L et al. Stereodynamics of the Reaction O(~1D_2) + H_2(v=0)→OH(X~2∏_1; v'=0,N', f)+H: State-Resolved Linear and Rotational Angular Momentum Distributions. J. Phys. Chem. A, 1997, 101(41): 7544-7557.
    [91] Aoiz F J, Martmez M T, Saez Rabanos V. Quasi-classical treatment of the Stereodynumics of chemical reactions:k-r-k' vector correlation for the Li+HF( v=1, j=1)→LiF+H reaction. J. Chem. Phys., 2001, 114(20): 8880-8896.
    [92] Aoiz F J, Banares L, Castillo J P et al. The stereodynamics of the O(~1D)+HD reaction on the gropnd 1 ~1A' and excited 1 ~1A″ potential energy surfaces. J. Chem. Phys., 2001, 114(19) : 8328-8338.
    [93] Alexander A J, Aoiz F J, Banares L et al. Product rotational angular momentum polarization in the reaction O(~1D_2)+ H_2→OH+ H. Phys. Chem. Chem. Phys., 2000, 2: 571-580.
    [94] Bradley K S, Schatz G C. A quasiclassical trajectory study of H+CO_2: Angular and translational distributions, and OH angular momentum alignment. J. Chem. Phys., 1997, 106(20): 8464-8472.
    [95] Bradley K S, Schatz G C. A quasiclassical trajectory study of H+H_2O→OH+H_2: Angular distributions and OH angular momentum alignment. J. Chem. Phys., 1998, 108(19): 7994-8003.
    [96] Wu G S, Schatz G C, Lendvay G et al. A new potential surface and quasiclassical trajectory study of H+H_2O→OH_2. J. Chem. Phys., 2000, 113(8): 3150-3161.
    [97] Liu Y F, Cong S L, Han K. L. Theoretical study of the stereodynamics of the reaction Cl+C_3H_8→C_3H_7+HCl. Chem. Phys., 2005, 309: 223-230.
    [98] de Miranda M P, Pogrebnya S K, Clary D C. Quantum stereodynamics of four-atom reactions: theory and application to H_2+OH→H_2O+H. Faraday Discuss., 1999, 113: 119-132.
    [99] de Miranda M P, Aoiz F J, Banares Let al. A unified quantal and classical description of the stereodynamics of elementary chemical reactions: State-resolved k-k'-j' vector correlation for the H+D_2(v=0, j=0) reaction. J. Chem. Phys., 1999, 111(12): 5368-5383.[100] de Miranda M P, Clary D C, Castillo J F et al. Using quantnmrotational polarization moments to describe the stereodynamics of the H+D_2( v=0, j=0)→HD(v', j')+D reaction. J. Chem. Phys., 1998, 108(8): 3142-3153.
    [101] de Miranda M P, Aoiz F J. Interpretation of Quantum and Classical Angular Momentum Polarization Moments. Phys. Rev. Lett., 2004, 93:083201-083204
    [102] de Miranda M P, Aoiz F J, Saez-Rabanos V et al. Spatial distributions of angular momenta in quantum and quasiclassical stereodynamics. J. Chem. Phys., 2004, 121(20): 9830-9843.
    [103] 马建军,丛书林.碰撞反应Ca+C2H5Br和Ca+n-C3H7Br产物CaBr的内能态分布.Chin. J. Chem. Phys., 2005, 18(3): 319-324. Ma JianJun, Cong ShuLin, Zhang ZhiHong et al. Vector Correlations and Product Rotational Alignments of Reactions Ca+RBr→CaBr+R(R=CH_3, C_2H_5 and n-C_3H_7). Chin. J. Chem. Phys., 2006, 19(2): 117-122.
    [104] Ma JianJun, Chen Mao Ou, Cong ShuLin et al. Stereodynamics study of the N(~4S)+O_2(X~3∑_g~+)→O(~3P)+ NO(X~2∏). Chem. Phys., 2006, in press.
    [105] 马建军,张志红,丛书林.Stereodynamics study of the N(~4s)+NO(X~3∑_g~-)→O(~3P)+N_2(X~2∏).物理化学学报,2006,22(8):968-972.
    [106] Ma JianJun, Cong ShuLin, Han KeLi. Stereodynamics study of the C(~3P)+NO( X~2∏)→CN(X~2∑~+)+O(~3P) reaction. Chem. Phys., 2006, submitted.
    [107] 赵成大,化学反应量子理论—兼分子反应动力学基础,东北师范大学出版社,1990.
    [108] 朱正和,俞华根,分子结构与势能函数,科学出版社,北京,1997.
    [109] Sato S. Potential Energy Surface of the System of Three Atoms. J. Chem. Phys., 1955, 23: 2465-2466.
    [110] 杜凤沛,陈兰,蔡遵生等.H+ClF体系的准经典轨线研究.物理化学学报,1999,15(7):593-598.
    [111] Zhao D Q, Zare R N. Quasiclassical trajectory simulation of the kinematically constrained reaction Ba+HI→Bal+H. J. Chem. Phys., 1992, 97(9): 6208:6214.
    [112] Costen M L, Hancock G., Orr-Ewing A J et al. Vector correlations in the reaction O(~3P)+CS(X ~1∑~+)→CO(X ~1∑~+)+S(~3P). J. Chem. Phys., 1994,100(4): 2754-2764.
    [113] Murrel J N, Varandas A J C. Mol. Phys., 1975, 30:223-235
    [114] Haire R G, Haschcke J M. Plutonium oxide systems and related corrosion products, A Publication of the Materials Research Socitey, Volume 26, number 9, 2001.
    [115] Gamallo P, Gonzalez M, Sayos R. Ab initio derived analytical fits of the two lowest triplet potential energy surfaces and theoretical rate constants for the N(~4S)+ NO(X~2∏) system. J. Chem. Phys., 2003, 119(5): 2545-2556.
    [116] M. Gonzalez, R. Valero, R. Sayos, Ab initio and quasiclassical trajectory study of the N(~2D)+NO(X~2∏)→O(~1D )+N_2(X~1∑_g~+) reaction on the lowest ~1A' potential energy surface. J.??Chem. Phys., 2000, 113(24), 10983-10998.
    [117] Andersson S, Markovic N, Nyman G. Quasi-classical trajectory simulations of C+ NO crossed molecular beam experiments. Chem. Phys., 2000, 259: 99-108.
    [118] Andersson S, Markovic N, Nyman G. An improved potential energy surface for the C+NO reaction. Phys. Chem. Chem. Phys., 2000, 2: 613-620.
    [119] Gonzalez M, Miquel I, Sayos R. Ab initio, variational transition state theory and quasiclassical trajectory study on the lowest ~2A' potential energy surface involved in the N(~4D)+O_2(X~3∑_g~-)→O(~3P)+NO(X~2∏) atmospheric reaction. J. Chem. Phys., 2001,115(6): 2530-2539.
    [120] Sayos R, Oliva C, Gonzalez M. New analytical (~2A', ~4A') surfaces and theoretical rate constants for the N(~4S)+O_2 reaction. J. Chem. Phys., 2002, 117(2): 670-680.
    [121] Yu H G, Nyman G. Reaction dynamics of chlorine atom with methane:Dual-level ab initio analytic potential energy surface and isotope effects. J. Chem. Phys., 1999,111(15): 6693-6704.
    [122] Wilson E B, Decius J C, Cross P C. Molecular Vibrations, Dover, New York, 1980.
    [123] Schatz G C. the analytical representation of electronic potential-energy surfaces. Rev. Mod. Phys., 1989, 61:669-688.
    [124] Porter R N. Molecular trajectory calculations. Ann. Rev. Phys. Chem., 1974, 25: 317-355.
    [125] Raff L M, Thompson D L. in Theory of Chemical Reaction Dynamics, Vol. 3 Maer, Ed., Florida: CRC Press, Inc., 1985.
    [126] Truhlar D G, Muckerman J T. in Atom-Molecule collision Theory—A Guide for the Experimentalist, R.B. Bernstein, New York: Plenum Press, 1979.
    [127] 郑锡光,Ba+BrCmH2m+1(1≤m≤5)微观反应动力学-模型势能面与monta-carlo准经典轨线计算:(硕士学位论文).大连:大连化学物理研究所,1991.
    [128] Percival J C. Semiclassical theory of bound states. Adv. Chem. Phys., 1977, 36: 1-61.
    [129] 陈茂笃,几个典型反应的立体反应动力学理论研究:(博士学位论文).大连:大连化学物理研究所,2002.
    [130] Dixon R N. The determination of the vector correlation between photofragment rotational and translational motions from the analysis of Doppler-broadened spectral line profiles. J. Chem. Phys., 1986, 85(4): 1866-1879.
    [131] Zare R N. Angular momentum, Understanding Spatial Aspects in Chemistry and Physics. New York: wiley, 1988.
    [132] Brink D M, Satchler G R. Angular momentum. 3rd, Ed. Oxford: Oxford University Press, 1993.[133] Hertel I V, Stoll W. Collision Experiments with Laser Excited Atoms in Cross Beams. Adv. Atom. Mol. Phys., 1978, 13: 113-228.
    [134] Munakata T, Matsumi Y, Kasuya T. Collision energy dependence of vibratiuonal/rotational distribution of BaBr produced in the crossed beam reaction Ba+CH_3Br. J. Chem. Phys., 1983, 79(4): 1698-1707.
    [135] Orea J M, Laplaza A, Rinaldi C A et al. Reaction dynamics of the Ca(~1D_2, ~3P_J)+CH_3I→CaI~*+CH_3 system: chemiluminescence, energy disposal and product polarization. Chem. Phys., 1997, 220: 337-354.
    [136] Ding G W, Sun W Z, Yang W S et al. Effects of reagent orbital alignment on product vibrational distributions of the chemiluminescent reaction Ca(~1P_1)+CH_3I Chem. Phys. Lett., 1997, 265: 392-398.
    [137] Pruett J G, Zare R N. Effect of vibrational excitation on the molecular beam reactions of Ca and Sr with HF and DF. J. Chem. Phys., 1978, 68(8): 3360-3365.
    [138] Teule J M, Janssen M H M, Bulthuis J et al. Laser-induced fluorescence studies of excited Sr reactions: Ⅱ. Sr(~3P_1)+CH_3F, C_2H_5F, C_2H_4F_2. J. Chem. Phys.,1999,110(22): 10792-10802.
    [139] Keijzer F, Teule J M, Bulthuis J et al, Reactions of Ca and Sr with CH_3X and CF_3X(X=Br, I). A laser-induced fluorescence study on nascent CaBr, SrBr, and SrI. Chem. Phys., 1996, 207: 261-285.
    [140] Garay M, Orea J M, Urena A G. Reaction dynamics of the Ca(~1D_2, ~3O_J) +RI→CaI*+R (R=CH_3, C_2H_5 and n-C_3H_7) system: chemiluminescence. Photo yield, electronic branching ratio and influence of the radical group. Chem. Phys., 1996, 207: 451-459.
    [141] Han K L, Zheng X G, Sun B F et al. Chemical reaction dynamics of barium atom with alkyl bromides. Chem. Phys. Lett., 1991, 181(5): 474-478.
    [142] Siegel A, Schultz A. Laser-induced fluorescence study of reactions of Ba with HCl and HBr at different collision energies. J. Chem. Phys., 1980, 72(11): 6227-6236.
    [143] 张鑫,解廷献,赵美玉等.Ba+HF(v,J)-+BaF(v’,J’)+H反应的准经典轨线研究.中国化学物理学报,2002,15(3):169-174.
    [144] Luntz, A C, Andresen, P. The chemical dynamics of the reactions of O(3P) with saturated hydrocarbons. Ⅱ.Theoretical model. J. Chem. Phys., 1980,72(11): 5851-5856.
    [145] Han K L, Zhang L, Xu D Let al. Experimental and Theoretical Studies of the Reactions of Excited Calcium Atoms with Ethyl and n-Propyl Bromides. J. Phys. Chem. A, 2001,105(13): 2956-2960.
    [146] Barnwell J D, Loeser J G, Herschbach D R. AngualarCorrelations in Chemical Reactions. Statistical Theory for Four-Vector Correlations. J. Phys. Chem., 1983, 87(15): 2781-2786.
    [147] Soep B, Vetter R. Stereodynamics and Active Control in Chemical Reactions. J. Phys. Chem., 1995, 99(37): 13569-13570.[148] Wang M L, Han K L, Zhan J P et al. Reaction dynamics of the Sr(~3P_J)+RI → SrI* +R (R=CH_3, CH_3CH_2) systems: rotational alignment, electronic state branching ratio and vibrational state population of products. Chem. Phys. Lett., 1997, 278: 307-312.
    [149] Han K L, He G Z, Lou N Q. Vibrational-state distributions of CaCl from the reactions of calcium atom with C_2H_(6-(?))I, (n = 2,3,4). J. Chem. Phys, 1992, 96(10): 7865-7866.
    [150] Zhan J P, Yang H P, Han K L et al. Rotational Alignment of Products from the NOCl + Ca Chemiluminescent Reaction. J. Phys. Chem. A, 1997, 101(41): 7486-7489.
    [151] Loesch H. Stereodynamics of Chemical Reactions. J. Phys. Chem., 1997, 101(41): 7461-7462.
    
    [152] Chen M D, Han K L, Lou N Q. Vector correlation in the H+D2 reaction and its isotopic variants: isotope effect on stereodynamics. Chem. Phys. Lett., 2002, 357: 483-490.
    [153] Chase M W, Davies C A, Downey J R et al. Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C_1 to C_ (?). Part 1. Properties of Condensed Phases. J. Phys. Chem. Ref. Data. 1985, 14(1): 1-175.
    
    [154] Gilibert M, Aguilar A, Gonzdlez M et al. Quasiclassical trajectory study of the N(~4S) +O_2(X~3∑_8~-)→NO(X~2Π) +O(~3P) atmospheric reaction on the ground potential energy surface employing an analytical Sorbie-Murrell potential. Chem. Phys., 1993, 172: 99-115.
    [155] Gilibert M, Gimenez X, Gonzdlez M et al, A comparison between experimental, quantum and quasiclassical properties for the N(~4S) +O_2(X~3∑_8~-)→NO(X~2Π) +O(~3P) reaction. Chem. Phys.,
    1995, 191: 1-15.
    [156] Sayos R, Oliva C, Gonzdlez M. The lowest doublet and quartet potential energy surfaces involved in the N(~4S)+O_2 reaction. I. Ab initio study of the Cs-symmetry ~2A', ~4A' abstraction and insertion mechanisms. J. Chem. Phys., 2001, 115(3): 1287-1297.
    
    [157] Sayos R, Hijazo J, Gilibert M et al. Variational transition state calculation of the rate constants for the N(~4S) +O_2 (X~3∑_8~-)→NO (X~2Π) +O(~3P) reaction and its reverse between 300 and 5000K. Chem. Phys. Lett.,1998, 284: 101-108.
    
    [158] Valli G S, Orru R, Clementi E et al. Rate coefficients for the N+02 reaction computed on an ab initio potential energy surface. J. Chem. Phys. 1995, 102(7): 2825-2831
    
    [159] Gonzdlez M, Oliva C, Say6s R. The lowest doublet and quartet potential energy surfaces involved in the N(~4S)+O_2 reaction. II. Ab initio study of the C_(2v) -symmetry insertion mechanism. J. Chem. Phys.,2002, 117(2): 680-692.
    
    [160] Caridade P J B S, Varandas A J C. Dynamics Study of the N(~4S) + O_2 Reaction and Its Reverse. J. Phys. Chem. A. 2004, 108(16): 3556-3564.
    
    [161] Ramachandran B, Balakrishnan N, Dalgarno A. Vibrational/rotational distributionsof NO formed from N+02 reactive collisions. Chem. Phys. Lett., 2000, 332: 562-568.
    [162] He J F, Liu S X, Liu X Set al. A quasiclassical trajectory study for the N(~4S)+O_2(X~3∑_g~-)→NO(X~2∏)+O(~3P) atmospheric reaction on a new ground potential energy surface. Chem. Phys., 2005, 315: 87-96.
    [163] Defazio P, Petrongolo C, Gray S K et al. Wave packet dynamics of the N(~4S)+O,(X~3∑_g~-)→NO(X~2∏)+O(~3P) reaction on the X~2A' potential energy surface. J. Chem. Phys., 2001, 115(7): 3208-3214.
    [164] Defazio P, Petrongolo C, Oliva C et al. Quantum dynamics of the N(~4 S)+O_2 reaction on the X~2A' and a ~4A, surfaces: Reaction probabilities, cross sections, rate constants, and product distributions. J. Chem. Phys., 2002, 117(8): 3647-3655.
    [165] Kim S K, Herschbach D R. Angular momentum disposal in atom exchange reactions. Faraday Discuss. Chem. Soc., 1987, 84: 159-169.
    [166] Case D E, McClelland G M, Heschbach D R. Angular momentum polarization in molecular collisions: classical and quantum theory for measurements using resonance fluorescence. Mol. Phys., 1978, 35: 541-573.
    [167] Case D E, McClelland G M, Heschbach D R. Angular momentum polarization in molecular collisions: classical and quantum theory for measurements using resonance fluorescence. Mol. Phys., 1978, 35: 541-573.
    [168] Miquel I, Hernando J, Sayos R et al. Influence of collision energy on the N(~2D)+O_2→O(~3P)+NO reaction dynamics: A quasiclassical trajectory study involving four potential energy surfaces. J. Chem. Phys. 2003, 119(19): 10040-10047.
    [169] Duff J W, Bien F, Paulsen D E et al. Geophys. Res. Lett., 1994, 21: 2043.
    [170] Bose D, Candler G V. Thermal rate constants of the 021NoNO10 reaction based on the ~2 A' and ~4 A' potential-energy surfaces. J. Chem. Phys. 1997, 107(16): 6136-6145.
    [171] Walch S P, Jaffe R L. Calculated potential surfaces for the reactions: O+N_2→NO+N and N+O_2→NO+O. J. Chem. Phys. 1987, 86(12): 6946-6956.
    [172] Alexander A J, Aoiz F J, Banares L et al. Product rotational angular momentum polarization in the reaction O(~1D_2)+H_2→OH+H. Phys. Chem. Chem. Phys. 2000, 2: 571-580.
    [173] Siskind D E, Rusch DW. Nitric Oxide in the Middle to Upper Thermosphere. J. Geophys. Res.,1992, 97: 3209-3217.
    [174] Wennberg P O, Anderson J G, Weisenstein D K. Kinetics of the reactions of ground-state nitrogen atoms (~4S_(3/2)) with NO and NO_2. J. Geophys. Res., 1994, 99: 18839-18846.
    [175] Warneck P. Chemistry of the National Atmosphere (Academic, San Diego, 1998), Chap. 3.[176] Gilibert M, Agiuilar A, Gonzalez M et al. Dynamics of the N(~4S_M)+NO(X~2∏)→_2~(X~1∑_g~+)+O(~3P_J) atmospheric reaction on the ~3A″ ground potential energy surface. Ⅰ. Analytical potential energy surface and preliminary quasiclassical trajectory calculations. J. Chem. Phys., 1992, 97(8): 5542-5553.
    [177] Gilibert M, Agiuilar A, Gonzalez M et al. Dynamics of the N(~4S_M)+ NO(X~2∏)→N_2(X~1∑_g~+)+O(~3P_J) atmospheric reaction on the ~3A″ ground potential energy surface. Ⅱ. The effect of reagent translational, vibrational, and rotational energies. J. Chem. Phys., 1993, 99(3): 1719-1733.
    [178] Duff J W, Sharma R D. Ouasiclassical trajectory study of the N(~4S)+NO (X~2∏)→N_2(X~1∑_g~+)+O(~3P) reaction cross section on the excited 3A' NNO surface. Chem. Phys. Lett., 1997, 265: 404-409.
    [179] Gamallo P, Gonzalez M, Sayos R. Ab initio study of the two lowest triplet potential energy surfaces involved in the N(~4S)+NO(X~2P) reaction. J. Chem. Phys., 2003, 118(23): 10602-10609.
    [180] Dubrin J, Mackay C, Wolfgang R. Reactions of atomic Nitrogen in the Quadruplet and Doublet States. J. Chem. Phys., 1966, 44: 2208-2209.
    [181] Iwata R, Ferrieri A, Wolf A P. Rate Constant Determination of the Reaction of Metastable N(~2D, ~2P)with NO, Using Moderated Nuclear Recoil Atoms. J. Phys. Chem., 1986, 90(25) : 6722-6726.
    [182] Krause H F. Velocity-Selected molecular beam study of rotational excitation in the reaction C+NO→CN+O. Chem. Phys. Lett., 1981, 78(1): 78-80.
    [183] Dorthe G., Costes M, Naulin C et al. Reactive scattering using pulsed crossed supersonic molecular beams. Example of the C+NO-+CN+O and C+N_2O→CN+NO reactions. J. Chem. Phys., 1985, 83(6) : 3171-3172.
    [184] Halvick P, Rayez J C, Rayez M T. A theoretical study of the dynamics of the reaction C (~3p) +NO (X_2∏)→CN(X~2∑~+)+O(~3p). Chem. Phys., 1989, 131: 375-390.
    [185] Naulin C, Costes M, Dorthe G. The C(~3P_J)+NO(X~2∏_r)→CN(X~2∑~+)+O(~3P) reaction dynamics studies at 0.06 and 0.23eV relative translational energy in pulsed crossed supersonic molecular beams. Chem. Phys., 1991, 153: 519-530.
    [186] Dean A J, Hanson R K, Bowman C T. A Shock Tube study of reactions of C atoms and CH with NO including product channel measurements. J. Phys. Chem., 1991, 95(8): 3180-3189.
    [187] Costes M, Nanlin C, Ghanem N et al. translational energy dependence of the reactive cross-section of the C+NO→CN+O Reaction studied in pulse, crossed, supersonic molecular beams. J. Chem. Soc. Faraday Trans., 1993, 89(10): 1501-1504.[188] Bergeat A, Calvo T, Dorthe G et al. Fast-flow study of the C+NO and C+O_2 reactions. Chem. Phys. Lett., 1999, 308: 7-12.
    [189] Halvick P, Rayez J C, Evleth E M. theoretical approach to the reaction C(~3P)+NO(X~2Π). J. Chem. Phys., 1984, 81(2): 728-737.
    [190] Rayez J C, Halvick P, Rayez M T et al. Three-atom indirect exchange reactions. I . 1D QCT study of the topological factors influencing the energetic distribution on the products. Chem. Phys., 1986, 101: 401-412.
    [191] Halvick P, Rayez J C, Rayez M T et al. Three-atom indirect exchange reactions. II. Dynamical behaviours explained by a simple model. Chem. Phys., 1987, 114: 375-387.
    
    [192] Monnerville M, Halvick P, Rayez J C et al. collinear quantum wave packet study of exothermic A+BC reactions involving an intermediate complex of linear geometry. J. Chem. Soc. Faraday Trans., 1993, 89(10): 1579-1585.
    [193] Simonson M, Markovic N, Nordholm S et al. Quasiclassical trajectory study of the C+NO reaction on a new potential energy surface. Chem. Phys., 1995, 200: 141-160.
    [194] Persson B J, Roos B 0, Simonson M. A theoretical investigation of the two lowest potential energy surfaces for the reaction C(~3P)+NO(X~2Π). Chem. Phys. Lett., 1995, 234: 382-389.
    [195] R. Abrol, L. Wiesenfeld, B. Lambert, A. Kuppermann, A quantum and semiclassical study of dynamical resonances in the C+NO→CN+O reaction. J. Chem. Phys., 2001,114(17): 7461-7470.