1. [地质云]滑坡
海洋环境条件设计参数推算模型不确定度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋环境条件设计参数推算模型在海洋工程及海岸防灾等方面有着重要的应用。海洋工程设计需要计算多年一遇重现期水平,海岸防灾等部门需要考虑对海洋灾害建立有效预警,这些都涉及到海洋环境条件设计参数推算模型。国际金融危机使我国外向型经济的发展严重受挫,又恰逢国家转变经济增长方式,强调可持续发展战略,因此从国家经济长远发展的高度考虑,未来可持续发展的、蓝色的海洋经济必定会成为我国经济新的增长点,而提供这一切的基础正是大量海洋工程和海岸工程的建设。基于海洋环境下不确定度及精确地选择适用设计参数推算模型为这些海洋、海岸工程和防灾部门提供了依据。
     以往海洋环境条件下设计参数推算模型的选择大部分是人工的,常用的做法有概率纸、适线法等,这样做不但没有减少模型的不确定度,恰恰相反,人为因素的干扰在一定程度上反而增加了模型的不确定度。而且有时候对于同一组海洋环境下的实测数据,不同的模型均能通过假设检验,但是计算出来的结果却相差较大,在这种情况下,选择哪一组计算结果作为设计标准也成了难题。
     现阶段设计参数推算模型不确定度的研究主要集中在对具体分布模型的形式分析及其自身信息的不确定度上,然而实际上的整体不确定度通常包含两类信息量,第一类信息量包含着如何选定模型时带来的不确定度,这部分的不确定性往往会被忽略;第二类信息量是当已经假定某个分布模型时该模型自身的不确定度。因此本文利用信息熵反映随机事件不确定度这一性质,通过信息熵作为模型整体不确定度分析的桥梁,综合考虑两类信息量,在样本数据的数量、离散程度,模型的分布形式以及模型参数估计量带来的抽样误差这几个方面对设计参数推算模型的信息熵进行了分析,提出了一种更加全面的计算整体不确定度的方法,并以此方法计算了同一实测数据下不同模型的整体不确定度,为模型的选择和评价提供了新的标准和依据,这方面的研究成果主要有以下几个方面:
     (1)针对第一类信息包含的不确定度,主要从数据样本的数量和离散程度进行了分析;对于第二类信息包含的不确定度,主要从模型分布形式及其参数估计量两个方面进行了分析。通过定理分别证明了样本数据的数量和离散程度对信息熵的影响,结果表明样本数据数量和离散程度与信息熵成正比;总结归纳了常见设计参数推算模型自身不确定度的计算公式,这些公式只和模型自身分布参数有关;运用蒙特卡洛方法对参数估计量的进行了抽样,并将误差结果用信息熵表示出来。
     (2)将两类信息所包含不确定度的各个方面均通过信息熵表示,给出了一种更加全面的信息熵计算公式,为模型的选择标准和评价指标提供了一种新的建议和依据。应用该公式对实测数据进行了分析,结果表明在该组数据下最大熵分布模型的整体不确定度最小,反映了最大熵模型相比其他模型具有更小的不确定度。
     (3)针对以往最大熵模型参数估计困难和计算量大的缺点,本文在矩估计的基础上提出一种改进形式,推导出了基于均值、方差、偏度和峰度等统计特征的参数求解的非线性方程组,有效地减小了参数求解的计算量,求解更加方便、迅速。
The design parameters calculating model under marine environment is very important in ocean engineering and seacoast disaster prevention. Ocean engineering designation will calculate return period, seacoast disaster prevention department will establish effective early warning system, both of them need design parameters calculating model. Under International Financial Crisis, export-oriented economy suffering a serious influence, while national changing economic growth mode and emphasizing sustainable development, in view of national long-term development, ocean will be the new growth pole, while ocean engineering and seacoast engineering provide powerfully support. Selecting appropriate model is the basis of all.
     Usually, people select design parameters calculating models under marine environment by probability paper or curve fitting method and so on. It doesn't reduce the uncertainty of data and models, conversely, human interference add uncertainty in some degree. Especially, models, all of which have being tested by hypothesis, will get different results under the same marine measured values. It is hard to choose which one to be as the design criterion in this condition.
     Recently, the research of design parameters calculating model's uncertainty is mainly concentrate on distribution formal analysis and its'self-uncertainty. In fact, the whole uncertainty contains both information amount, the first kind information contains the uncertainty of how to choose the model, while this kind of uncertainty usually be neglected; the second kind information is the model's own uncertainty while fix the model. In the paper, for information entropy reflects random event uncertainty, through it as the bridge to analyze whole uncertainty, considering two kind information, analyzing model information entropy in sample data's number, degree of dispersion, model distribution forms and its parameter estimator, giving a new methods which can calculate the whole uncertainty, the research contain:
     (1) For the uncertainty involved in the first kind information, it mostly analyzes in sample data's quantity and its'degree of dispersion; for the uncertainty involved in the second kind information, it considers the distribution forms and its parameters estimation. A result that sample data's quantity and its'degree of dispersion are in direct proportion to information entropy is proved by theory. Some common models' self-uncertainties are calculated just by their parameters, and sampling the parameters' estimation by Monte Carlo method.
     (2) A new information entropy calculating formula is given to consider the double uncertainty involved in the differ information, which provides a new standard and basis for the choice between differ models and evaluation criterion. Compared with the other models, the analysis based on the series of annual maximum wave heights shows that the Max-Entropy model has the minimum uncertainty.
     (3) To improve the difficulty in parameter estimate of the maximum entropy model, this text proposing an improving format on the basic of moment estimation, deviating a nonlinear equations which contain mean, variance, kurtosis and skewness, making the calculation more convenient and fast.
引文
[1]韩凤亭,谢波涛.双层嵌套多目标概率模型在珠江三角洲港口工程环境分析中的应用.中国港湾建设.2009,04,12-16
    [2]刘德辅,姜昊.台风诱发暴潮极端潮位的预测方法.中国海洋大学学报.2009,39(3):516-520
    [3]徐德伦,于定勇.随机海浪理论.北京:高等教育出版社,2001
    [4]Stuart Coles. A introduction to statistical modeling of extreme values北京:世界图书出版公司北京公司,2008.45-91
    [5]董胜,刘德辅.年极值水位的灰色马尔科夫预报模型.水利学报.1999,1:60-64
    [6]Zhang L Z, Xu D L. A new maximum entropy probability function for the surface elevation of nonlinear sea waves [J]. China Ocean Engineering, 2004,19(4):637-646
    [7]刘德辅,王莉萍,庞亮.多维复合极值分布理论在极端海况概率预测中的应用.科学通报.2006,51(9):1112-1116
    [8]马逢时,刘德辅.复合极值分布理论及其应用.应用数学学报.1979,2(4):366-375
    [9]孙川.常见分布的测量不确定度置信因子的计算.误差与数据处理.2002,07:46-48
    [10]李大军,程朋根,龚健雅,熊助国.多维随机变量的熵不确定度.计量学报.2006,27(3):290-293
    [11]Unites States Government Accountability Office. History of the Lake Pontchartrain and Vicinity Hurricane Protection Project. Nov 9,2005, GAO-06-244T
    [12]中华人民共和国交通部.港口工程技术规范312-315北京:人民交通出版社,1987
    [13]中华人民共和国交通部.海港水文规范JTJ 213-98.北京:人民交通出版社,2000
    [14]Fisher R A and Tippett L H C. Limiting forms of the frequency distribution of largest or smallest member of a sample [J]. Proc. Cambridge Philos. Soc. 1928,24:180-190
    [15]Weibull W. A statistical distribution of wide applicability. Journal of Applied Mechanics,1951,18:293-297
    [16]Von Miss R. La. Distribution de la plus grande de n values [J]. Revue Mathematique de ⅰ Union Interbalkanique(Athens),1936,1:141-160
    [17]Smith R L. Maximum likelihood estimation in a class of non-regular cases. Biometrika,1985,72:67-90
    [18]水利水电工程计算规范SL278-2003, 原子能出版社,2002,11
    [19]黄振平.水文统计学.南京:河海大学出版社,61-62
    [20]Jaynes E T. Information theory and statistical mechanics [J]. Physical Review,1957,106(4):620-630
    [21]Zhang L Z, Xu D L. A new maximum entropy probability function for the surface elevation of nonlinear sea waves [J]. China Ocean Engineering, 2004,19(4):637-646
    [22]叶其孝,梁在中.实用数学手册[M].北京:科学出版社,1992:441-451
    [23]Liu T F. Long term distribution of hurricane characteristics[C]. Houston Texas: Offshore Technology Conference,1982:305-313
    [24]钱学伟,陆建华.水文测验误差分析与评定.北京:中国水利水电出版社,2007:55-74
    [25]李桂成,测量误差与数据处理原理[M],长春:吉林大学出版社,1990
    [26]张学文,马力.熵气象学.北京:气象出版社,1992:128-129
    [27]姜丹.信息理论与编码.合肥:中国科学技术大学出版社,1992,353-399
    [28]冯瑞,冯少彤.溯源探幽:熵的世界.北京:科学出版社,2005
    [29]刘嘉焜,王家生,张玉环.应用概率统计.北京:科学出版社,2004,155-166
    [30]王雪琴.随机变量的熵与标准熵.三门峡职业技术学院学报.2003,2(4):33-34
    [31]Landwehr J M, et al. Probability Weighted Moments Compared with Some Traditional Technique in Estimating Gumbel Parameters and Quantiles. Water Resources Research,1979,15(5)
    [32]曲延碌,张程道,阎书源.三参数Weibull分布的参数估计.气象学报,1987,45(3):374-375
    [33]李松仕.概率权重矩法推求P-III型分布参数新公式.水利学报,1989(5):39-48
    [34]王莉萍,代伟,齐莹.设计波高推算的一种新模型.中国海洋大学学报,2010,40(1):54-58
    [35]刘一鸣,周家云,谢际太.数学分析.济南:山东大学出版社,1993,504-545
    [36]刘德辅,董胜.随机工程海洋学.青岛:中国海洋大学出版社,2004
    [37]Duane Hanselman, Bruce Littlefield,朱仁峰译.精通Matlab7.北京:清华大学出版社,2006
    [38]史道济.实用极值统计方法.天津:天津科学技术出版社,2006
    [39]薛毅,陈立萍.统计建模与R软件.北京:清华大学出版社,2007
    [40]金光炎.水文统计的原理与方法.北京:水利电力出版社,1964
    [41]赵伟,杨永增,于卫东,乔方利.长期极值统计理论及其在海洋环境参数统计分析中的应用.海洋科学进展.2003,21(04):471-476
    [42]Thomas M. Cover, Joy A.Thomas,阮吉寿,张华译.信息论基础.北京:机械工业出版社,2005
    [43]Langley R M, EI-Shaarawi A H. On the calculation of extreme wave heights:. A Review[J] Ocean Engineering,1986,13(1):93-118
    [44]Kirby W H, Moss M E. Summary of Flood-frequency analysis in the united states[J]. Journal of Hydrology,1987,96:5-14
    [45]严恺,梁其荀.海港工程.北京:海洋出版社,1996
    [46]严恺,梁其荀.海岸工程.北京:海洋出版社,2002
    [47]魏宗叙译.统计学数学方法.上海:上海科技出版社,1966
    [48]Liu D F, Dong S, Wang C. Uncertainty and sensitivity analysis of reliability for marine structure. The Proceedings of 6th international offshore and Polar Engineering Conference. Vol.4, Los Angeles, USA,1996,380-386
    [49]Goda Y, Konagaya 0, Takeshita N, etal. Population of extreme wave heights estimated through regional analysis. Proe.27th Int. Conf. Coastal Engrg. Sydney,2000,1078-1091
    [50]刘德辅,施建刚,周志刚.蒙特一卡洛方法在海洋工程设计中的应用.海洋学报,1990,12(2):236-243