1. [地质云]滑坡
利用惯导信息的反舰导弹抗干扰方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷达导引头是现代大多数反舰导弹末制导的主传感器,其性能直接影响反舰导弹的作战效能。传统体制的雷达导引头难以适应现代战场的复杂电磁环境,深入开展对抗条件下的雷达导引头抗干扰技术研究,提高雷达导引头适应复杂战场环境的能力,是当前迫切需要解决的军事问题之一。
     为了解决雷达导引头受到干扰后,反舰导弹命中精度下降的问题,本文提出了基于惯导信息利用的雷达导引头抗干扰方法,以提高反舰导弹作战效能。论文主要包括三个部分,分别是反舰导弹雷达导引头面临的干扰、惯导系统误差分析以及基于惯导信息利用的反舰导弹抗干扰策略研究。
     依据反舰导弹作战典型特点,第二章将雷达导引头面临的干扰分为舷外无源干扰、舷外有源诱饵和舰载有源干扰三类,分别从原理与战术运用方面进行了较为详细的阐述和分析。这些分析可为雷达导引头采取的抗干扰措施以及仿真试验场景的设置提供一定理论支撑。
     惯导信息在反舰导弹末制导跟踪阶段应用时,惯导系统的导航误差影响着导弹对目标的跟踪精度。因此,第三章在阐述惯性导航系统原理的基础上,分析方位指北式平台惯导系统的力学编排,给出其数学模型和误差模型,并通过计算机仿真对典型弹道的惯导系统误差特性进行了定量分析。
     针对反舰导弹雷达导引头受到干扰的场景,第四章提出了两种反舰导弹雷达导引头抗干扰方法,分别是基于惯导信息利用的抗箔条质心干扰方法与基于惯导信息利用的抗噪声压制式干扰方法。第一种方法针对雷达导引头受到箔条质心干扰的场景,通过综合利用惯导与雷达导引头信息进行抗干扰。提出该抗干扰思路后,建立了抗干扰仿真关键模型,并利用计算机仿真验证了该方法抗箔条质心干扰的有效性;同时通过仿真分析了惯导系统定位精度、舰艇机动方式、干扰施放时弹舰距离、比例导引系数、目标回波信噪比等因素对反舰导弹命中概率的影响。第二种方法主要针对雷达导引头受到噪声压制式干扰的场景,基于惯导信息利用进行抗干扰。在提出该抗干扰方法后,建立抗干扰仿真关键模型,通过计算机仿真对该方法抗噪声压制式干扰的效果进行了分析。仿真结果表明,干扰施放时弹舰距离较小,该方法能够有效对抗噪声压制式干扰;弹舰距离较大,舰艇机动方式制约着抗干扰方法的应用。
Radar seeker is the main sensor of most Anti-ship Missiles(ASM) in terminal guidance, and its performance has a direct impact on ASM performance. It is difficult for traditional radar seeker to adapt to the complex electromagnetic environment of modern battlefields. Accordingly, it is urgent to research on anti-jamming techniques of radar seeker under confrontation condition and improve the adaptability of radar seeker to electromagnetic environment in modern battlefield.
     If the radar seeker is jammed, the precision of ASM would decrease. The thesis proposed an anti-jamming method based on Inertial Navigation System(INS) information to improve the performance of ASM. It consists of three parts, which is the pattern of ASM electromagnetic jammers, analysis of INS error and the anti-jamming method based on INS information.
     Based on the operating characteristics of ASM, the second chapter divided jamming into three patterns: outboard passive jamming, outboard active bait and ship-borne active interference. And it analyzed the principle and tactical operation in detail. The above analysis provides theoretical basis for anti-jamming measures of radar seekers and scenario settings of simulation.
     When INS information is used in target tracking of ASM, the navigation error affects the tracking accuracy of the missiles. Therefore, the third chapter is based on the principle of the INS, and analyzed the mechanic configuration of north-pointing INS platform, derives the mathematical model and analyzes the error characteristics of INS by simulation.
     According to the scenarios of jammed ASM radar seekers, two anti-jamming methods are proposed in chapter 4. One solved the chaff centroid jamming based on INS information. The other is proposed for noise suppressing jamming based on INS information. According to the scenario of chaff centroid jamming, the first anti-jamming method made use of both INS information and radar seeker information. The model of anti-jamming simulation is then established and simulation was conducted to verify the effectiveness of this anti-jamming method. It also simulated the affects of the following factors on hitting probability: the position accuracy of INS, target ship maneuvering, the distance between missile and ship when false target is released, the proportional navigation ratio, the SNR of reflected waves, and so on. The second method is proposed for noise suppressing jamming , which is based on the INS information. Simulation model is established accordingly, and the effects of this anti-jamming method is analyzed. Simulation results show that this method is able to anti jamming when the distance between the missile and the target is small, but when the distance of missile-to-target is large, target ship maneuvering restrict the implementation of this anti-jamming method.
引文
[1]高月.现代反舰导弹与海上防空作战杂谈[J].Shipborne Weapons,2009(7):81-85.
    [2]王伟.浅析中国反舰导弹[J].Shipborne Weapons,2008(5):35-47.
    [3]李相平,李亚昆,殷勇等.现代反舰导弹面临的电子战环境与对策[J].舰船电子工程,2008(4):22-26.
    [4]唐苗,徐兴柱.新技术在反舰导弹中的应用[J].飞航导弹,2008(1):27-29.
    [5]方有培.反舰导弹及舰艇的干扰、隐身技术[J].航天电子对抗,2000(3):5-9.
    [6]姚丹.反舰导弹雷达导引头检测技术研究[D]:硕士学位论文.长沙:国防科学技术大学,2007.
    [7]秦永元.惯性导航[M].北京:科学出版社,2006:203-263.
    [8]朱家海.惯性导航[M].北京:国防工业出版社,2008:1-20.
    [9] David H. Titterton and John L. Weston.张天光等译.捷联惯性导航技术[M].北京:国防工业出版社,2007:1-39.
    [10]胡小平.自主导航理论与应用[M].长沙:国防科技大学出版社,2002.
    [11]章燕申.高精度导航系统[M].北京:中国宇航出版社,2005:1~68.
    [12]任思聪.实用惯导系统原理[M].北京:宇航出版社,1988:208~505.
    [13] Neng-jing Li and Yi-ting Zhang. A survey of radar ECM and ECCM[J]. IEEE Trans on AES, VOL31, NO3, 1995.6: 1110-1120.
    [14]顾尔顺.美军箔条的基本特性和使用战术[J].现代防御技术,1991(5):25-28.
    [15]侯建军等.美国海军武器装备手册[M].北京:解放军出版社,2000.
    [16]郭桂蓉等.雷达电子战与异常空情判断[M].长沙:国防科技大学出版社,1996.
    [17]王辉等.现代海军武器装备手册[M].北京:国防工业出版社,2001.
    [18] SL Fearnley and E P Meakin. EW against anti-ship missiles[J]. IEE Colloquium on Signal Processing Techniques for Electronic Warfare, 1992: 1-4.
    [19]马俊声.电子抗干扰技术概述[J].航天电子对抗,2001(1):35-39.
    [20] J. Michael, Madewell, Mitigating the effects of chaff in ballistic missile defense[J]. 2003 IEEE radar conference, 19-22.
    [21]张光义.提高雷达系统抗干扰能力的一些措施[J].现代雷达,2001,23(1):1-7.
    [22] Spezio A E. Electronic warfare systems[J]. IEEE Trans. on MTT. 2002, 50(3): 633-644.
    [23] Mosinski J D. Electronic Countermeasure[C]. IEEE Tactical Communications Conference, 1992.
    [24] Seifer A D. Monopulse radar angle tracking in noise or noise jamming[J]. IEEE Trans. AES., 1992, 28(3).
    [25]高静,杨甫,王嵛琦等.单脉冲雷达导引头抗噪声干扰性能分析与验证[J].航空兵器,2005(5):33-37.
    [26]张巨泉,李潮.频率捷变雷达抗干扰效能评估研究[J].航天电子对抗.2003(5):23-26.
    [27]郝英振,秦玉虎,李彦鹏.毫米波导引头港口舰船目标识别技术[J].雷达科学与技术,2009(3):180-183,188.
    [28]沈允春,刘庆普.箔条云极化识别方案性能分析[J].系统工程与电子技术,1996(11):1-7.
    [29] Xianhe S, Hai D, Jinghong X. A new method of ship and chaff polarization recognition under rain and snow cluster[C]. Xiamen, China: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2007.
    [30] Xianhe S, Hai D. Echo theoretical analysis from chaff cloud and research polarization targets recognition[C]. Guilin, China: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2007.
    [31]倪汉昌.对海雷达抗箔条干扰技术途径探讨[J].飞航导弹,1995(08):256-258.
    [32]宋立众,乔晓林,孟宪德.脉冲多普勒雷达导引头角欺骗干扰的极化抑制[J].电波科学学报,2005,20(3):353-357.
    [33]唐志凯,刘隆和,郝媛.多模寻的制导的数据融合算法研究[J].弹箭与制导学报,2003,23(4):15-18.
    [34]赵国庆.雷达对抗原理[M].西安:西安电子科技大学出版社,2003.
    [35]李朝伟.基于数据融合技术对抗有源诱饵研究[J].电子对抗技术,2004,19(2):27-31.
    [36]邱鹏宇.反舰导弹复合导引头抗干扰性能仿真研究[D]:硕士学位论文.长沙:国防科学技术大学,2005.
    [37]焦彦华.主/被动复合制导雷达性能评估研究[D]:硕士学位论文.长沙:国防科学技术大学,2004.
    [38]赵宜楠,金铭,乔晓林.利用极化单脉冲雷达抗质心干扰的研究[J].现代雷达,2006,28(12):45-46,51.
    [39]刘隆和.多模复合寻的制导技术[M].北京:国防工业出版社,1999.
    [40] Van Trees H L. Detection, Estimation and Modulation Theory Part I. John Wiley&Sons, New York: 1968, Chapter 2.
    [41]杜东平,唐斌.基于频域对消的噪声调幅干扰抑制[J].电子与信息学报,2007,29(3):557-559.
    [42] Blasch E P, Culpepper E B, Johnson J. Using an Adaptive INS, Monopulse MUSIC, and STAP (AIMS) for Targeting[C]. Dallas, TX: IEEE 1998 National Radar Conference, 1998.
    [43]陈克俊,胡建学,赵兴锋.基于惯导和雷达导引头的再入复合末制导方法研究[J].现代防御技术,2002,30(4):32-34.
    [44]李连仲,毛金国.末制导雷达/惯性复合导航算法[J].航天控制,2006,24(1):43-48.
    [45]吴森堂,刘星,张淼.反舰导弹末制导多尺度多传感器数据融合方法[J].航天控制,2005,23(2):36-40.
    [46] Borison S. L. Probability Density for the Radar Cross Section of One or More Randomly-Oriented Dipoles[A]. Group Report 1964-33, 22 June 1964, MIT Lincoln Laboratory.
    [47] Bloch, F., M. Hamermesh, and M. Phillops. Return Cross Sections from Random Oriented Resonant Half-Wave Length Chaff[A]. Harvard University, Radio Research Laboratory, Technical Memorandum,411-TM-127,June 19,1944.
    [48] Mack C. L, and B. Reiffen. RF Characteristics of Thin Dipoles [J], Proc. IEEE, Vol. 52, No.5: 533-542.
    [49]侯振宁.箔条干扰技术研究[J].舰船电子对抗,2002,25(4):7-10.
    [50]贺珍,龙笔虎.反舰导弹末制导雷达与箔条干扰武器对抗技术的发展[J].舰船电子工程,1999(6):47-50.
    [51]白渭雄,李爱飞,李树斌.雷达诱饵的干扰仿真及分析[J].电子信息对抗技术,2008,23(4):53-57.
    [52]李伟,贾慧波,顾启泰.抗箔条质心干扰的一种实用差分算法[J].航天电子对抗,2000(3):1-4.
    [53]徐敬.箔条质心干扰对抗反舰导弹的决策仿真[J].2008,20(18):4831-4834.
    [54]胡剑光,朱正中.舰载电子战系统质心干扰作战使用研究[J].舰船电子工程,2005(6):57-59,76.
    [55]刁鸣.雷达对抗技术[M].哈尔滨,哈尔滨工程大学出版社,2007.
    [56]陈静.雷达无源干扰原理[M].北京,国防工业出版社,2009.
    [57]董创业.基于DRFM的雷达干扰技术研究[D]:硕士学位论文.西安:西安电子科技大学,2007.
    [58]刘勇.基于DRFM的PD雷达干扰技术及其实现[D]:硕士学位论文.长沙:国防科学技术大学,2006.
    [59]王国玉,汪连栋.雷达电子战系统数字仿真与评估[M].北京:国防工业出版社,2004.
    [60]解凯,陈永光,汪连栋等.距离波门拖引方案的分析建模与评估[J].系统工程与电子技术,2006,28(8):1158-1160,1163.
    [61]王铁,陈波.基于DRFM的PD雷达速度欺骗干扰[J].电子对抗,2006,(6):19-22,47.
    [62]赵晶.基于高精度惯导的反舰导弹搜捕策略研究[D]:硕士学位论文.长沙:国防科学技术大学,2007.
    [63]陈曙光.捷联惯性导航系统的仿真研究[D]:硕士学位论文.南京:南京理工大学,2006.
    [64]周徐昌,沈建森.惯性导航技术的发展及其应用[J].自动测量与控制,2006,25(9):55-56,59.
    [65] W. -S. Ra, I. -H. Whang and J. -Y. Ahn. Robust horizontal line-of-sight rate estimator for sea skimming anti-ship missile with two-axis gimbaled seeker[J]. IEE Proc.-Radar Sonar Navigation, Vol. 152, No. 1, February 2005: 9~15.
    [66]易维勇.惯性导航及组合导航研究及仿真[D]:硕士学位论文.郑州:中国人民解放军信息工程大学,2002:1~22.
    [67]赵玉霞.捷联惯导系统仿真算法的研究及其实现[D]:硕士学位论文.大连:大连理工大学,2005:13~44.
    [68] W.D. Blair, M. Brandt-Pearce. Unresolved Rayleigh target detection using monopulse measurements[J]. IEEE Trans. AES. 1998, 34(2): 543-552.
    [69] S. M. Sherman. Complex indicated angles applied to unresolved radar targets and multipath, IEEE Trans AES. 1971(7): 160-170.
    [70] Asseo, S. J. Detection of target multiplicity using quadrature monopulse angle. IEEE Trans AES. 1981(17) : 271-280.
    [71]丁鹭飞,耿富录.雷达原理[M].西安:西安电子科技大学出版社,2002.
    [72] Borison S. L., Statistics of the Radar Cross Section of a Volume of Chaff[A]. Group Report 1965-10, 10 February 1965, MIT Lincoln Laboratory.
    [73] R. G. Wickliff, Robert J. Garbacz, The Average Backscattering Cross Section of Clouds of Randomized Resonant Dipoles[J], IEEE Trans on AP, 1974, 22(5): 503-505.
    [74]杨学斌,吕善伟.箔条云团RCS的概率分布[J].现代雷达,2000,22(2):54-56.
    [75]刘强,刘以安.箔条云回波的一种建模与仿真方法[J].现代雷达,2006,28(8):91-94.
    [76]李朝伟,王宏强,黎湘等.基于单脉冲雷达以多个不可区分的目标信号的检测研究[J].信号处理.2005,21(2):153-157.
    [77]黄宗辉,秦玉亮,李朝伟等.单脉冲雷达导引头对抗投放式诱饵技术研究[J].现代防御技术.2008,36(1):100-104.
    [78]李朝伟.低分辨雷达对群目标的检测及分辨研究[D]:博士学位论文.长沙:国防科学技术大学,2005.
    [79]龙飞,张林,刘鼎臣.目标规避条件下反舰导弹捕捉概率的计算方法[J].战术导弹技术,2005(6):19-21.
    [80]马金祥,黄文生,张建生.反舰导弹比例导引的一种计算机模拟仿真方法[J].常州工学院学报,2005,18(5):14-18.