1. [地质云]滑坡
冷却牛肉生产过程微生物污染状况分析和减菌技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷却牛肉的品质是衡量冷却牛肉商品价值的重要指标,而因微生物污染导致的冷却牛肉货架期减短、安全风险增加成为制约我国牛肉成产企业快速、健康、可持续发展的技术瓶颈。肉牛屠宰过程中的各个工序如剥皮、去脏、劈半、检疫修整,以及牛肉分割过程中人员、用具、设备等都会影响冷却牛肉的微生物污染状况,有效的胴体喷淋减菌技术及合理的操作面消毒方式可以减少冷却牛肉的微生物污染,提高冷却牛肉品质。
     本研究从分析肉牛屠宰和胴体分割过程中微生物污染状况入手,探讨了现代肉牛屠宰企业中常用的胴体喷淋减菌技术和操作面的各种常规减菌措施的减菌效果。结果显示:
     1、调研某企业肉牛屠宰过程中各工序,对胴体表面的微生物数量统计分析,得出初始操作污染的微生物是整个屠宰过程中微生物污染的主要来源;各工序间胴体表面的微生物数量存在极显著的相关关系,且检疫修整后胴体的微生物污染状况与去脏后胴体的微生物状况关系最密切,去脏环节是微生物数量增加的另一关键环节。
     2、选择不同喷淋方式,高压清水冲洗能显著降低全胴体的菌落总数,减菌量为0.62lg(cfu/cm~2);其他喷淋方式与高压清水清洗对比,2%的乳酸喷淋对胸口的减少量为1.06lg(cfu/cm~2),而对全胴体、颈部、臀腿部的减菌效果不明显;高于74℃的热水处理对全胴体的减菌量约为1.0lg(cfu/cm~2),胸口的减菌量达到了1.5lg(cfu/cm~2),仅对颈部的作用不明显;热水+乳酸复合喷淋对部位及全胴体的作用均显著。
     3、采用2%的乳酸喷淋过的胴体与高压清水清洗对比,冷却成熟过程结束后,胴体表面微生物的减少量与喷淋后的减菌量比较,有扩大的趋势,这说明冷却成熟中乳酸能继续发挥作用。
     4、分割过程中,各种工具、操作面的初始微生物数量较多,操作面中剔骨案板的污染最严重;分割肉中微生物的数量与修割案板、剔骨案板、剔骨传送带上微生物数量的想关性显著;随着分割工作时间的延长,修割案板、剔骨案板、剔骨传动带表面的微生物数量总体呈减低的趋势。
     5、3‰过氧乙酸溶液的杀菌效果优于75%酒精溶液;4.5‰的过氧乙酸溶液可以使剔骨案板上的大肠菌群数量降至可接受范围;而6.0‰过氧乙酸溶液和7.5‰过氧乙酸溶液对菌落总数、假单胞菌的减菌效果与3.0‰过氧乙酸溶液的效果比较,减菌量差异并不显著。
The quality of chilled beef is an important indicator which can measure the commercial value of chilled beef. However, the shelf-life of chilled beef shorten and safe risk increased which was caused by the growth of contaminated microorganism have tended to restrict the rapid, healthy, and sustainable development of Chinese beef manufacturers. The microbial contamination of chilled beef was effected by the slaughter conditions, such as dehiding, evisceration, split half, trimming, and the personnel, tools, and equipments used in the carcass segmentation process. It can reduced microbial contamination of chilled beef and improve its quality by the means of effective carcass spraying technology and reasonable surface disinfection operation.
     The study researched the conditions of the steps of slaughter and carcass segmentation process. Furthermore, the effect of carcass spraying technology and the method of surface disinfection operation on microorganisms’number had been probed. The results of this study were as follows:
     1. The beef cattle slaughter processes in an enterprise of the slaughtering were investigated, and number of microorganisms on the carcass surface was analysis statistically. This indicated that the operations of dehiding give the most contamination to the beef carcasses in the slaughtered process. The number of the microorganism on the surface of beef carcasses between the steps had significant correlation. And the contamination of the carcass which was trimmed had the highest significant correlation to the eviscerated carcasses. It said that the evisceration was another step which gave the most contamination.
     2. Different spray methods were chosen to be studied. The reduction of microbiological counts in beef carcasses when sprayed with water was 0.62lg(cfu/cm~2), while spraying with 2% lactic acid reduced numbers of bacteria on brisket was 1.06lg(cfu/cm~2), however it could not reduce numbers of bacteria on the whole carcass, neck, legs and buttocks obviously. Hot water treatment(>74℃) reduced numbers of bacteria on the whole carcass was nearly 1.0lg(cfu/cm~2), and the reduction of brisket was more then1.5lg(cfu/cm~2), the numbers of bacteria on neck had obvious results. Spraying with hot water and lactic acid could have a significant effective reduction to the beef carcasses.
     3. Spraying with 2% lactic acid reduced microbiological counts on beef cooling mature carcass, the reduction became higher than the spraying. It said that lactic acid could have an effective effort in the chilling process.
     4、The microbiological counts on tools, surfaces was big in the cutting process before working. The contamination of beef had a significant correlation with the slicing bench, boning bench, slicing belt. The numbers of bacteria on the slicing bench, boning bench, and boning belt would be less with the longer of working time.
     5、The reduction of microbiological counts of 3‰peroxyacetic acid was higher then 75%ethanol. 4.5‰peroxyacetic acid could have a satisfactory result of coliforms to the boning bench. But the reduction of the total counts of microorganisms and Pseudomonas had no significant difference between 6.0‰peroxyacetic acid (7.5‰peroxyacetic acid) and 3.0‰peroxyacetic acid.
引文
曹礼辉.我国肉牛产业现状及趋势展望[J].专家观点, 2010, (11): 23 - 24.
    邓富江.中国肉类产业发展概况[J].业界动态, 2009, (9): 48 - 50.
    丁玉.肉牛屠宰及冷却牛肉不同贮藏时间细菌菌群多样性研究[D].山东:山东农业大学食品科学与工程学院, 2010.
    杜燕,张佳,胡铁军等.宰前因子对牛肉品质的影响[J].中国农业科学, 2009, 42(10): 3625-3632.
    高淑娟,毛衍伟,王秀江等.两段式冷却对牛肉食用品质的影响[J].农业工程学报, 2009, 25(10) : 312 - 317.
    公共场所空气微生物检验方法细菌总数测定GB/T 18204.1—2000[S].中华人民共和国国家标准,2001年1月1日实施.
    胡芳芳,俞平,高士根.辐照食品剂量与卫生学指标研究[J].中国放射医学与防护杂志, 2004, (5):464 - 465.
    李飞燕,梁荣蓉,毛衍伟等.冷却肉中微生物生长模型和货架期预测模型的研究进展[J]. 食品科学, 2009, (7): 172 - 177.
    罗欣,周光宏.中国肉制品的现在、过去和发展[J].肉类研究, 2008, (7): 9 - 12.
    南庆贤,戴瑞彤.“肉制品加工关键技术研究与新产品开发”课题简介[J].中国食品卫生杂志, 2005, 17(4): 289 - 293.
    南庆贤,肉类工业手册[M].北京:中国轻工业出版社, 2003.
    食品卫生微生物学检验菌落总数测定GB/T 4789.2—2008[S].中华人民共和国国家标准,2009年3月1日实施.
    食品卫生微生物学检验大肠菌群计数GB/T 4789.3—2008[S].中华人民共和国国家标准,2009年3月1日实施.
    《食品微生物标准》欧盟2073 EC - 2005[S].欧盟委员会发布, 2006年1月1日实施.
    孙承锋,戴瑞彤,曲富春.微生物与肉类食品的腐败[J].肉类研究, 2001, (1): 32 - 36.
    王璋,许时婴,汤坚.食品化学[M].北京:中国轻工业出版社, 1999.
    吴信法.畜产食品兽医卫生检验手册[M].上海:上海科学技术出版社, 1988.
    昝林森,赵春平,刘扬等.中国肉牛产业现状、热点透析与发展趋势及对策[J].中国农业科技导报, 2009, 11(5): 1 - 5.
    张一敏.冷却牛肉假单胞菌生长动力学模型及货架期预测的研究[D].山东:山东农业大学食品科学与工程学院, 2010.
    Allen, D. Dumping pathogens down the drains [J]. Meat Processing, 1999, (May): 36‐42.
    Bacon, R. T., Belk, K. E., Sofos, et al. Microbial populations on animal hides and beef carcasses at different stages of slaughtering in plants employing multiplesequential interventions for decontamination [J]. Journal of Food Protection, 2000, (63): 1080-1086.
    Bacon, R., Sofos, J. N., Belk, K. E., et al. Application of a commercial steam vacuum unit to reduce inoculates Salmonella on chilled fresh beef adipose tissue [J]. Dairy, Food and Environmental Sanitation, 2002, (22): 184-190.
    Barboza de Martinez, Y., Ferrer, K., Salas, E. M. Combined effects of lactic acid and nisin solution in reducing levels of microbiological contamination in red meat carcasses [J]. Journal of Food Protection, 2002,(65):1780-1783.
    Bell, R. G. Distribution and sources of microbial contamination on beef carcasses [J]. Journal of Applied Microbiology, 1997, (82): 292-300.
    Bolton, D. J., Doherty, A. M., Sheridan, J. J. Beef HACCP: intervention and non-intervention systems [J]. International Journal of Food Microbiology, 2001, (66): 119-129.
    Borch, E., Kant-Muermans, M. L., Blixt, Y. Bacterial spoilage of meat products and cured meat [J]. International Journal of Food Microbiology, 1996, (30): 103-120.
    Bosilevac, J. M., Nou, X., Barkocy-Gallagher, G. A., Arthur, et al. Treatments using hot water instead of lactic acid reduce levels of aerobic bacteria and Enterobacteriaceae and reduce the prevalence of Escherichia coli O157:H7 on preevisceration beef carcasses[J]. Journal of Food Protection, 2006,(69):1808-1813.
    Burfoot, D., Mulvey, E. Reducing microbial counts on chicken and turkey carcasses using lactic acid [J]. Food Control, 2011, (xxx): 1-7.
    Cabedo, L., Sofos, J. N., Smith, G. C. Removal of bacteria from beef tissue by spray washing after different times of exposure to fecal material [J]. Journal of Food Protection, 1996, (59): 1284-1287.
    Chen, J., Rossman, M. L., Pawar, D. M. Attachment of enterohemorragic Escherichia coli to the surface of beef and a culture medium [J]. LWT-Food Science and Technology, 2007, (40):249-254.
    Cutter, C. N., Rivera-Betancourt, M. Interventions for the reduction of Salmonella Typhimurium DT 104 and Non-O157:H7 enterohemorrhagic Escherichia coli on beef surfaces [J]. Journal of Food Protection, 1996, (59): 1284-1287.
    Dainty, R. H., Hibbard, C. M. Aerobic metabolism of brochothrix thermosphacta growing on meat surface and in laboratory media[J]. Journal of Application Bacteriology, 1980, (48):387-396.
    Dalgaard, P. Qualitative and quantitative characterization of spoilage bacteria from packed fish [J]. International Journal of Food Microbiology, 1995, (26): 319-333.
    Dorsa, W. J. New and established carcass decontaminating procedures commonly used in thebeef-processing industry [J]. Journal of Food Protection, 1997, (60): 1146-1151.
    Dorsa, W. J., Cutter, C. N., Siragusa, G. R., et al. Microbial decontamination of beef and sheep carcasses by steam, hot water spray washes, and a steam-vacuum sanitizer [J]. Journal of Food Protection, 1996, (59): 127-135.
    Ellis, D. I., Goodacre, R. Rapid and quantitative detection of the microbial spoilage of muscle foods: current status and future trends [J]. Trends in Food Science & Technology, 2001, 12(11):414-424.
    Frank, J. F., Ehlers, J., Wicker, L. Removal of Listeria monocytogenes and poultry soil-containing biofilms using chemical cleaning and sanitizing agents under static conditions [J]. Food Protection Trends,2003, (23):654-663.
    Gill, C. O., Bryant, J. The effects on product of a hot water pasteurizing treatment applied routinely in a commercial beef carcass dressing process [J]. Food Microbiology, 2000, (17): 495-504.
    Gill, C. O., Bryant, J., Bedard, D. The effects of hot water pasteurizing treatments on the appearances and microbiological conditions of beef carcass sides [J]. Food Microbiology, 1999, (16): 281-289.
    Gill, C. O., McGinnis, J. C. Improvement of the hygienic performance of the hindquarters skinning operations at a beef packing plant [J]. International Journal of Food Microbiology,1999, (51): 123-132.
    Gill, C. O., Jones, T., Badoni, M. The effects of hot water pasteurizing treatments on the microbiological conditions and appearances of pig and sheep carcasses [J]. Food Research International, 1998, (31): 273-278.
    Gill, C. O., Landers, C. Proximate sources of bacteria on boneless loins prepared from routinely processed and detained carcasses at a pork packing plant [J]. International Journal of Food Microbiology, 2004, (97): 171-178.
    Gill, C. O., Badoni, M. Effects of peroxyacetic acid, acidified sodium chlorite or lactic acid solutions on the microflora of chilled beef carcasses [J]. International Journal of Food Microbiology, 2004, (91): 43-50.
    Gill, C. O., McGinnis, J. C., Badoni, M. Assessment of the hygienic characteristics of a beef carcass dressing process [J]. Journal of Food Protection, 1995, (59): 136-140.
    Gill, C. O., Landers, C. Microbiological effects of carcass decontaminating treatments at four beef packing plants [J]. Meat Science, 2003, (65): 1005-1011.
    Gill, C. O. Effects on the microbiological condition of product of decontaminating treatments routinely applied to carcasses at beef packing plants [J]. Journal of Food Protection, 2009, (72): 1790-1801.
    Gill, C. O., Bryant, J. Decontamination of carcasses by vacuum-hot water cleaning and steam pasteurizing during routine operations at a beef packing plant [J].Meat Science, 1997,(47): 267-276.
    Gill, C. O., Bedard, D., Jones, T. The decontaminating performance of a commercial apparatus for pasteurizing polished pig carcasses [J]. Food Microbiology, 1997, (14): 71-79.
    Gill, C. O., Jones, T. Assessment of the hygienic characteristics of a process for dressing pasteurized pig carcasses [J]. Food Microbiol., 1997, (14): 81-91.
    Goksoy, E. O., James, C., Corry, J. E. L., et al. The effect of hot-water immersions on the appearance and microbiological quality of skin-on chicken-breast pieces [J]. International Journal of Food Science and Technology, 2001, (36): 61-69.
    Gram, L., Ravn, L., Rasch, M., et al. Food spoilage—interactions between food spoilage bacteria [J]. International Journal of Food Microbiology, 2002, (78): 79-97.
    Grau, F. H. Microbial growth on fat and lean surfaces of vacuum-packaged under chilled beef [J]. Journal of Food Science, 1983, (48):326-336.
    Graves Delmore, L. R., Sofos, J. N., Schmidt, G.R., et al. Decontamination of inoculated beef with sequential spraying treatments [J]. Journal of Food Science, 1998, (63): 890-893.
    Hugas, M., Tsigarida, E. Pros and cons of carcass decontamination: the role of the European Food Safety Authority [J]. Meat Science, 2008, (78): 43-52.
    James, S. J., Brown, T., Evans, J. A., et al. Decontamination of meat, meat products and other foods using steam condensation and organic acids. In Proceedings of the third Karlsruhe nutrition symposium. Part 1. European research towards safer and better food[J]. 175-185.
    James, C., Thornton, J. A., Ketteringham, L., et al. Effect of stream condensation, hot water or chlorinated hot water immersion on bacterial numbers and quality of lamb carcasses[J]. Journal of Food Engineering, 2000, (43): 219-225.
    Jay, J. M., Vilai, J. P., Hughes, M. E. Profile and activity of the bacterial biota of ground beef held from freshness to spoilage at 5-7℃[J]. International Journal of Food Microbiology, 2003, (81): 105-111.
    Jericho, K. W., Bradley, J. A., Kozub, G. C. Microbiologic evaluation of carcasses before and after washing in a beef slaughter plant [J]. Journal of the American veterinary Medical Association, 1995, (206): 452-455.
    Jessen, B., Lammert, L. Biofilm and disinfection in meat processing plants [J]. International Biodeterioration & Biodegradation, 2003(51):265-269.
    Korkeala, H., Bjrkroth, J. Microbiological spoilage and contamination of vacuum-packaged cooked sausages [J]. Journal of Food Protection, 1997, (60):724-731.
    Koutsoumanis, K. P., Sofos, J. N. Microbial contamination of carcasses and cuts. Encyclopedia of Meat Science [M]. In W. K. Jensens(Ed.), 2004: 727-737, Amsterdam,Elsevier Academic Press.
    Kozempel, M., Goldberg, N., Craig, J. C. Jr. The vacuum/steam/vacuum process [J]. Food Technology, 2003, (57): 30-33.
    Langsrud, S., Sidhu, M. A., Heir, E., et al. Bacterial disinfectant resistance-a challenge for the food industry [J]. International Biodeterioration & Biodegradation, 2003,(51):283-290.
    Li, M. Y., Zhou, G. H., Xu, X. L., et al. Changes of bacterial diversity and main flora in chilled pork during storage using PCR-DGGE[J]. Food Microbiology, 2006, (23):607-611.
    Liu, F., Guo, Y. Zh., Li, Y. F. Interactions of microorganisms during natural spoilage of pork at 5℃[J]. Journal of Food Engineering, 2006, (72):24-29.
    Liu, F., Yang, R. Q., Li, Y. F. Correlations between growth parametera of spoilage micro-organisms and shelf-life of pork stored under air and modified atmosphere at﹣2, 4 and 10℃[J]. Food Microbiology, 2006, (23):578-583.
    Loretz, M., Stephan, R., Zweifel, C. Antibacterial activity of decontamination treatments for cattle hides and beef carcasses [J]. Food Control,2010, (xxx):1-13.
    Mark, P., Wayne, S., Eric, E. Considering the complexity of microbial community dynamics in food safety risk assessment [J]. International Journal of Food Microbiology, 2004, (90): 171-179.
    Marks, H., Coleman, M. Estimating distributions of numbers of organisms in food products [J]. Journal of Food Protection, 1998, (61): 1535-1540.
    Marshall, K. M., Niebuhr, S. E., Acuff, G. R., et al. Identification of Escherichia coli O157:H7 meat processing indicators for fresh meat through comparison of the effects of selected antimicrobial interventions [J]. Journal of Food Protection, 2005, (68): 2580-2586.
    Mcdonald, K., Sun, A. W. Predictive food microbiology for the meat industry: a review [J]. International Journal of Food Microbiology, 1999, (52): 1-27.
    McEvoy, J. M., Sheridan, J. J., Blair, I. S., et al. Microbial contamination on beef in relation to hygiene assessment based on criteria used in EU decision 2001/471/EC [J]. International Journal of Food Microbiology, 2004, (92):217-225.
    Morgan, A. I., Radewonuk, E. R., Scullen, O. J. Ultra high temperature ultra short time surface pasteurization of meat[J]. Journal of Food Science, 1996, (61): 1216-1218.
    Murray, K. A., Gilmour, A., Madden, R. H. Microbiological quality of chilled beef carcasses in Northern Ireland: a baseline survey [J]. Journal of Food Protection, 2001, (64):498-502.
    Nanda, Nakao T. Role of buffalo in the socioeconomic development of rural Asia: current status and future prospectus [J]. Animal Science Journal, 2003, (74): 443-455.
    Netten, P. van, Huis-in’t-Veld, J. H. J., Mossel, D. A. A. The immediate bactericidal effect of lactic acid on meat-borne pathogens[J]. Journal of Applied Bacteriology, 1994, (77): 490-496.
    Netten, P. van, Mossel, D. A. A., Huis-in’t-Veld, J. H. J. Lactic acid decontamination of fresh pork carcasses: a pliot plant study [J]. International Journal of Food Microbiology, 1995, (25): 1-9.
    Netten, P. van, Valentijn, A., Mossel, D. A. A., et al. Fate of low temperature and acid-adapted Yersinia enterocolitica and Listeria monocytogenes that contaminate lactic acid decontaminated meat during chill storage[J]. Journal of Applied Bacteriology, 1997, (82): 769-779.
    Nutsch, A. L., Phebus, R. K., Riemann, M. J., et al. Evaluation of a steam pasteurization process in a commercial beef processing facility[J]. Journal of Food Protection, 1997, (60): 485-492.
    Nychas, G - J. E., Skandamis, P. N., Tassou, C. C., et al. Meat spoilage during distribution[J]. Meat Science, 2008, (78): 77-89.
    Nychas, G - J. E., Marshall, D., Sofos, J. Meat Poultry and Seafood. In Doyle, M. P., Beuchat, L. R., Montville, T. J. Food Microbiology Fundamentals and Frontiers, 2007, (Chapter6). ASM press.
    Phebus, R. K., Nutsch, A. L., Schatfer, D.E., et al. Comparison of steam pasteurizing and other methods for reduction of pathogens on surfaces of freshly slaughtered beef [J]. Journal of Food Protection, 1997, (60): 476-484.
    Phillips, D., Summer, J., Alexander, J. F., et al. Microbiological quality of Australian beef [J]. Journal of Food Protection, 2001,(64):692-696.
    Pierson, M. D., Collins-Thompson, D. L., Ordal, Z. J. Microbiological sensory and pigment changes of aerobically and anaerobically packaged beef [J]. Food Technology, 1970, (24):1171-1175.
    Pipek, P., Hou?ka, M., Hoke, K., et al. Decontamination of pork carcasses by steam and lactic scid [J]. Journal of Food Engineering, 2006, (74): 224-231.
    Pipek, P., Hou?ka, M., Jeleníková, J., et al. Microbial decontamination of beef carcasses by combination of steaming and lactic acid spray[J]. Journal of Food Engineering, 2005, (67): 309-315.
    Pipek, P., Izumioto, M., Jeleníková, J. Colour changes cansed by surface decontamination of meat by lactic acid [J].Fleischwirtschaft-International, 2004, (19): 99-102.
    Pipek, P., Baco, B. Lactic acid: meat surface decontaminantⅡ[J]. Maso, 1997, (8): 65-68.
    Pipek, P., Izuminoto, M., Hou ? ka, M., et al. Colour changes caused by surface decontamination of meat[J]. In Academic congress, Proceedings of the Academic congress, Shinshu University, Ino(Nagano), 15 September 2001.
    Reagan, J. O., Acuff, G. R., Buege, D. R., et al. Trimming and washing of beef carcasses as a method of improving the microbiological quality of meat [J]. Journal of Food Protection, 1996, (59): 751-756.
    Ryan, J. H. On-line real time aid to the verification of CCP compliance in beef slaughter HACCP systems [J]. Food Control, 2007, (18):689-696.
    Sim(?)es, M., Vieira, M. J. Persister cells in Pseudomonas fluorescens biofilms treated with a biocide [J]. In proceedings of the international conference processes in biofilms: Fundamentals to applications, Davis, CA, USA, 2009, 58-62.
    Siragusa, G. R. The effectiveness of carcass decontamination systems for controlling the presence of pathogens on the surfaces of meat animal carcasses [J]. Journal of Food Safety, 1995, (15): 229-238.
    Smulders, F. J. M., Greer, G. G. Integrating microbial decontamination with organic acid in HACCP programmes for muscle foods: prospects and controversies [J].International Journal of Food Microblology,1998,(44):149-169.
    Somers, E. B., Wong, A. C. Efficacy of two cleaning and sanitizing combinations on Listeria monocytogenes biofilms formed at low temperature on a variety of materials in the presence of ready-to-eat-meat residue [J]. Journal of Food Protection, 2004(67):2218-2229.
    Staruch, L’., Chalupka, B., Sirotná, Z., et al. Decontamination of surface of slaughter carcasses with application of lactic acid[J]. In XXXⅡSymposium on new methods of production and evaluation of foods, 28-30 May, Skalsky Dvur, poster(in Czech).
    Tergney, A., Bolton, D. J. Validation studies on an online monitoring system for reducing faecal and microbial contamination on beef carcasses [J]. Food Control, 2006, (17): 378-382.
    Tu, R. J., Wu, H. Y., Lock, Y. S., et al. Evaluation of microbial dynamics during the ripening of a traditional taiwanese naturally fermented ham[J]. Food Microbiology, 2010, (27):460-467.
    USDA. U.S. Department of agriculture. Pathogen reduction; hazard analysis and critical control point (HACCP) system; final rule. Fed. Regist. 61, 38805-38989.
    Zweifel, C., Fischer, R., Stephan, R. Microbiologucal contamination of pig and cattle carcasses in different small scale Swiss abattoirs [J].Meat Science, 2008,(78): 225-231.
    Zweifel, C., Baltzer, D., Stephan, R. Microbiological contamination of cattle and pig carcasses at five abattoirs detemined bu swab sampling in accordance with EU decision 2001/471/EC [J]. Meat Science, 2005,(69) :559-566.