1. [地质云]滑坡
新型Bragg光栅及其在可调谐半导体激光器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Bragg光栅和可调谐半导体激光器是全光通信网络的重要组成部分之一,为实现可重构的智能光网络提供了保障。同时,它们也是光纤传感和测量领域中的关键器件之一。Bragg光栅和可调谐半导体激光器,凭着广泛的应用前景,受到了国内外业界人士的广泛关注。本论文围绕Bragg光栅及其在可调谐半导体激光器中的应用,展开了系统而深入的研究,具体研究内容如下:
     (1)根据Bragg光栅的傅立叶变换理论,推导出了取样光纤光栅、两种高斯切趾的取样光纤光栅和间插式取样光纤光栅的反射谱包络表达式,并且通过传输矩阵法验证了该表达式的准确性。不仅分析了光栅中的各个参数对反射谱包络及其旁瓣的影响,还详细地研究了温度和应力的变化对取样光纤光栅反射谱的影响。
     (2)根据带相移间插取样光纤光栅反射谱包络表达式,分析了带相移的间插取样光纤光栅中子光栅相移、光栅区长度、间插长度等对反射谱包络的影响。为设计顶部平坦的间插取样光栅提供了理论依据。
     (3)基于傅立叶变换的线性不变性和可逆变换性,提出了多反射谱包络级联技术。该技术不仅能加密取样光纤光栅的谱信道,而且还能够对光栅的空间物理结构加密。利用该技术,提出了两种新型的多反射谱Bragg光栅——数字级联光栅和连续间插取样光栅。这两种新型的Bragg光栅不仅能提供顶部平坦的反射谱包络,还可以让光栅保持高的峰值反射率。
     (4)将线性激光器传输法与等效腔法结合,建立了可调谐取样光纤光栅外腔半导体激光器的数值仿真模型。模拟了该激光器的静态特性,如:阈值特性、P-I曲线、光谱线宽、激射光谱、静态调谐特性和边模抑制比。为设计利用Vernier调谐原理的外腔可调谐半导体激光器提供理论基础。
     (5)通过理论模拟取样光纤光栅外腔半导体激光器的调谐曲线、边模抑制比和输出光功率,观测到了存在于所有可调谐半导体激光器中的非线性现象,如:调谐迟滞现象、边模抑制比和输出光功率谱不对称现象。为了分析这些非线性现象的起因,将半导体中的非线性效应(如:交叉增益调制、交叉相位调制、四波混频)考虑到该激光器的理论模型中。分析了内部的物理参数和半导体中的四波混频效应对这些非线性现象的影响。为研究可调谐半导体激光器内部的非线性机理提供了理论基础。
     (6)为了抑制可调谐取样光纤光栅外腔半导体激光器的非线性效应,在该激光器的外部光栅中引入了间插技术和切趾技术。旁瓣的抑制能够一定程度上抑制非线性现象,增加可调谐半导体激光器的调谐带宽。间插技术的处理能够让取样光纤光栅的外腔可调谐半导体激光器获得18.4 nn调谐带宽。并在整个调谐范围内,其光功率输出达到10 dBm,边模抑制比达到40 dB。
     (7)建立了SG-DBR激光器的理论模型;研究了SG-DBR激光器的静态特性。通过理论模型的建立,发现可调谐半导体激光器的反射端面同取样光栅之间形成了一个隐形的F-P谐振腔。该隐形的F-P谐振腔对SG-DBR激光器的静态特性有很大的影响,特别是调谐曲线。
     (8)提出了基于半导体材料数字级联光栅的两种设计结构,一种是改变级联光栅的光栅周期;另一种改变级联光栅的有效折射率。这两种方案都能够获得顶部平坦的反射谱。还提出了三种可实施的制作方法:全息曝光、电子束曝光、和纳米压印。
     (9)提出了一种新型的可调谐DBR激光器——数字级联DBR激光器。模拟结果表明,该设计获得了将近50 nm的波长调谐范围,并且在整个调谐区域内,边模抑制比可达到35 dB,输出功率维持在10 dBm左右,且具有很好的输出光功率均衡性(0.6 dB),且对端面的反射率有很高的容忍度。
Bragg gratings and tunable semiconductor lasers are some of essential devices inoptical networks,and provide important guarantee for the reconfigurable AutomaticallySwitched Optical Network (ASON).They also are the key components for optical fibersensors and measurements.Due to these wide applications,many scientists and expertshave been attracted to research on the Bragg gratings and tunable semiconductor lasers.Inthis dissertation,Bragg gratings and their applications on tunable semiconductor lasers havebeen explored and investigated.The main contents are as follows:
     (1)Due to the Fourier transform theory on the fiber Bragg grating,the analyticalexpressions on the sampled fiber grating,Gauss-apodized sampled fiber grating,sampledGauss-apodized fiber grating,and interleaved sampled fiber grating withψphase shift havebeen presented.Accuracy of those expressions has been verified by a good agreement withtheir reflection spectrum obtained by the transfer matrix method.Impacts of parameters inthe sampled fiber grating on the reflection spectrum envelope and sidelobes have beenstudied.The impacts of temperature and stress on reflection spectrum of the sampled fibergrating have also been discussed in detail.
     (2)Based on the analytical expression of interleaved sampled fiber grating,impacts ofshift phases of the inserted sub-grating,grating length,as well as interleaved length on itsreflection spectrum envelope have been analyzed.It provides theoretical reference to designthe interleaved sampled fiber grating in detail.
     (3)According to the linear invariability and reversibility of Fourier transform theory,anovel multiple reflection spectrum envelope concatenated technology has been proposed.The proposed technology can densify spectral channels of sampled gratings with fixed peakspace,as well as spatially physical corrugation of structure.Using such technology,twomulti-peak Bragg gratings have been designed:one is the digital concatenated grating;theother is the consecutive interleaved sampled grating.These proposed gratings can provide afiat reflection spectrum envelope and high peak reflectivity.
     (4)The theoretical simulation model of the tunable sampled fiber grating externalcavity semiconductor laser has been built by combining the equivalent reflection cavitytheory with the transmission line laser theory.Due to this model,the steady-state propertiesof sampled fiber grating external cavity semiconductor lasers,such as thresholdcharacteristics,P-I curves,line-width,output spectra,static wavelength tuning curve,as wellas SMSR,have been simulated and analyzed.It is useful for designing tunable external cavity semiconductor lasers with Vernier tuning principle.
     (5)The nonlinear phenomena such as asymmetric side mode suppression ratio orpower characteristics and tuning hysteresis phenomena are the ubiquitous phenomena intunable semiconductor lasers,which have been observed in the sampled fiber gratingexternal cavity semiconductor lasers by studying its static characteristic curves,such as thewavelength tuning curves,side mode suppression ratio curves,output power curves and soon.In order to analyze the origin of these nonlinear phenomena,the nonlinear effects insemiconductor (e.g.cross-gain modulation effect,cross-phase modulation effect,and fourwave mixing effect)have been considered in the theoretical model of the sampled fibergrating external cavity semiconductor laser.Influence of its internal physical parameters andthe four wave mixing effect on nonlinear phenomena of such laser are analyzed anddiscussed.It is helpful for exploring the internal nonlinear mechanism of tunablesemiconductor lasers.
     (6)In order to suppress the nonlinear effect in such sampled fiber grating extemalcavity semiconductor laser,apodization and interleaved technology have been introducedinto the external sampled fiber grating of such laser.The suppression of side-lobes cansuppress the nonlinear phenomena in the sampled fiber grating external cavitysemiconductor laser and increase its tuning range.An interleaved technology can make suchlaser obtain 18.4 nm tuning range.In its whole tuning range,side mode suppression ratio of40 dB and output power around 10dBm have been obtained.
     (7)The theoretical model of the SG-DBR laser has been established based on thetransmission line laser theory.The steady-state characteristics of the SG-DBR laser havebeen discussed.It is found that the invisible F-P cavity between anti-reflection coating andsampled grating has existed in the SG-DBR laser.Such invisible F-P cavity has taken largeinfluences on the steady-state characteristics of the SG-DBR laser,especially on its tuningcurves.
     (8)Two designs of the digital concatenated grating on the semiconductor materialhave been proposed for providing the top flat reflection spectrum envelope.One is forchanging the grating period of the conctenaed sub-grating;the other is for changing theeffective material index of the sub-grating.Three manufacture methods of these digitalconcatenated gratings have been proposed,which are holography method,electron beamlithography,and nanoimprint lithography.
     (9)A novel digital concatenated grating DBR laser has been proposed,for obtainingwidely tuning range (>50 nm),high side mode suppression ratio (>35 dB),and high output power (~10 dBm)with low power varation (0.6 dB).Such proposed laser has high outputpowers with small power variation,and high toleration on facet reflectivity.
引文
[1]Kapron F.P.,Keck D.B.,and Maurer R.D.Radiation losses in glass optical waveguide.Applied Physics Letters,1970,17:423~425
    [2]Hayashi I.,Panish M.B.,Foy P.W.,et al.Junction lasers which operate continuously at room temperature.Applied Physics Letters,1970,17:109~111
    [3]Sanferrare R.J.Terrestrial lightwave systems.Journal AT&T Technology,1987,66(1):95~100
    [4]Gnaueh A.H.,Kasper B.,Linke R.,et al.4-Gbit/s transmission over 103 km of optical fiber using a novel electronic multiplexer/demultiplexer.Journal of Lightwave Technology,1985,3(5):1032~1035
    [5]Yamada J.I.,Machida S.,Kimura T.2 Gbit/s optical transmission experiments at 1.3 μm with 44 km single-mode fiber.Electronics Letters,1981,17(13):479~480
    [6]Miya Y.,Terunuma Y.,Hosaka T.,et al.Ultimate low-loss signal-mode fiber at 1.55 μm.Electronics Letters,15(4):106~107
    [7]Digonnet M.J.F.(Ed.).Rare-earth doped fiber lasers and amplifiers.2~(nd)edition.New York:Marcel Dekker Inc.,2001.531~582
    [8]Miniscalco W.J.Erbium-doped glasses for fiber amplifier at 1500 nm.Journal of lightwave Technology,1991,9(2):234~250
    [9]Pedersen B.,Bjarklev A.,Povlsen J.H.,et al.The design of erbium-doped fiber amplifiers.Journal of lightwave Technology,1991,9(9):1105~1112
    [10]Yoshida S.,Kuwano S.,Iwashita K.Gain-flattened EDFA with high Al concentration for multistagerpeated WDM transmission systems.Electronics Letters,1995,31(20):1765~1767
    [11]Namkyoo P.,Wysocki P.,Pedrazzani R.,et al.High-power Er-Yb-doped fiber amplifier with multichannel gian flatness within 0.2 dB over 14 nm.IEEE Photonics Technology Letters,1996,8(9):1148~1150
    [12]Ono H.,Yamda M.,Ohishi Y.Gain-flattened Er~(3+)-doped fiber amplifier for a WDM signal in the 1.57-1.6 μm wavelength region.IEEE Photonics Technology Letters,1997,9(5):596~598
    [13]Forghieri F.,R.Tkach W.,Chraolyvy A.R.WDM system with unequally spaced channels.Journal of lightwave Technology,1995,13(5):889~897
    [14]Giles C.and Spector M.The wavelength add/drop multiplexer for lightwave communication networks.Bell Labs Technical Journal,1999,207~229
    [15]Rohde M.,Caspar C.,Heimes N,et al.Robustness of DPSK direct detection transmission format in standardfiber WDM systems.Electronics Letters,2000,36(17):1483~1484
    [16]Cho P.S.,Griqoryan V.S.,Godin Y.A.,et al.Transmission of 25 Gb/s RZ-DQPSK signals with 25-GHz channel spacing over 1000 km of SMF-28 fiber.IEEE Photonics Technology Letters,2003,15(3):473~475
    [17]Charlet G.,Renaudier J.,Mardoyan H.,et al.Transmission of 16.4 Tbit/s capacity over 2550 km using PDM-QPSK modulation format and coherent reciver.Optical Fiber Communication Conference and Exposition National Fiber Engineers Conference.San Diego,2008.PDP3
    [18]Ono T.,Yano Y.,Fukuchi K.,et al.Charateristics of optical dubinary signals in terabit/s high spectral efficiency WDM systems.Journal of Lightwave Technol.,1998,16(5):788~798
    [19]Alferness R.C.,Kogelnik H.,and Wood T.H.The evolution of optical system:optics everywhere.Bell Labs Technical Journal,2000,188~202
    [20]Reinhart F.K.,Logan R.A.,and Shank C.V.GaAs-Al_xGa_(l-x)As injection lasers with distributed Bragg reflectors.Applied Physics Letters,1975,27:45~47
    [21]Hill K.O.,Fujii Y.,Joshnson D.C.,et al.Photosensitivity in optical fiber waveguides:application to reflection filter fabrication.Applied Physics Letters,1978,32:647~649
    [22]Meltz G.,W.Morey W.,and Glen W.H.Formation of Bragg gratings in optical fibers by a transverse holographic method.Optics Letters,1989,14(15):823~825
    [23]Koch T.L.,Koren U.,Gnall R.P.,et al.Continuously tunable 1.5 μm multiple-quantum-well GaInAs/GalnAsP distributed-Bragg-reflector lasers.Electronics Letters,1988,24(23):1431~1433
    [24]Jayararnan V.,Mathur A.,Coldren L.A.Extended tuning range in sampled grating DBR lasers.IEEE Photonics Technology Letters,1993,5(5):489~491
    [25] Jayaraman V., Chuang Z., and Coldren L. A. Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings. Jounral of Quantum Electronics, 1993,29(6): 1824-1834
    [26] Hubner J., Zauner D., and Kristensen M. Strong sampled Bragg grating for WDM applications. IEEE Photonics Technology Letters, 1998,10(4): 552-554
    [27] Ouellette F., Krug P. A., Stephens T., et al. Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings. Electronics Letters,1995, 31(11): 899-900
    [28] Lee H., and Agrawal G P. Purely phase-sampled fiber Bragg gratings for broad-band dispersion and dispersion slope compensation. IEEE Photonics Technology Letters, 2003,15(8): 1091-1093
    [29] Li H., Sheng Y., Li Y., et al. Phased-only sampled fiber Bragg gratings for high-channel-count chromatic dispersion compensation. Journal of Lightwave Technology, 2003,21(9): 2074-2083
    [30] Lee H. and Agrawal G P. Bandwidth equalization of purley phase sampled fiber Bragg gratings for broadband dispersion and dispersion slope compensation.Optics Express, 2004,12(23): 5595-5602
    [31] Ishii H., Tohmori Y, Tamamura T, et al. Super structure grating (SSG) for broadly tunable DBR lasers. IEEE Photonics Technology Letters, 1993, 5(4): 393-395
    [32] Ishii H., Tohmori Y, Yoshikuni Y, et al. Multiple-phase shift super structure grating DBR lasers for broad wavelength tuning. IEEE Photonics Technology Letters, 1993, 5(6): 613-615
    [33] Nasu Y and Yamashita S. Densification of sampled fiber Bragg gratings using multiple-phase-shift (MPS) Technique. Journal of Lightwave Technology, 2005,23(4): 1808-1817
    [34] Ibsen M., Durk M. K., Cole M. J., et al. Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation. IEEE Photonics Technology Letters,1998,10(6): 842-844
    [35] Avrutsky I. A., Ellis D. S., Tager A., et al. Design of widely tunable semiconductor lasers and the concept of Binary superimposed gratings (BSG's).Journal of Quantum Electronics, 1998,34(4): 729-742
    [36] Loh W. H., Zhou F. Q., Pan J. J. Novel designs for sampled grating-based multiplexers-demultiplexers. Optics Letters, 1999, 24(21): 1457-1459
    [37] Gioannini M. and Montrosset I. Novel interleaved sampled grating mirrors for widely tunable DBR lasers. IEE Proc.-Optoelectron., 2001,148(1): 13-19
    [38] Wyatt R., Devlin W. J. 10 kHz linewidth 1.5 μm InGaAsP external cavity lasers with 55 nm tuning range. Electronics Letters, 1983,19(3): 110-112
    [39] Westbrook L. D., Nelson A. W., Fiddyment P. J. Monolithic 1.5 μm hybrid DFB/DBR lasers with 5 nm tuning range. Electronics Letters, 1984, 20(23):957-959
    [40] Buus J. and Murphy E. J. Tunable lasers in optical networks. Journal of Lightwave Technology, 2006,24(1): 5-11
    [41] Lee S., D. Tauber A., Jayaraman V., et al. Dynamic responses of widely tunable sampled grating DBR lasers. IEEE Photonics Technology Letters, 1996, 8(12):1597-1599
    [42] Shi H. X., Cohen D. A., Barton J., et al. Dynamic range of widely tunable sampled-grating DBR lasers. Electronics Letters, 2002, 38(4): 180-181
    [43] Pezeshki B., Vail E., Kubicky J., et al. 20-mW widely tunable laser module using DFB array and MEMS selection. IEEE Photonics Technology Letters, 2002,14(10): 1457-1459
    [44] Ward A. J., Robbins D. J., Busico G, et al. Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance. Journal of Selected Topics in Quantum Electronics, 2005,11(1)149-156
    [45] Ponnampalam L., Whitbread N. D., Barlow R., et al. Dynamically controlled channel-to-channel switching in a full-band DS-DBR laser. Journal of Quantum Electronics, 42(3): 223-230
    [46] Sarlet G, Morthier G. and Baets R. Control of widely tunable SSG-DBR lasers for dense wavelength division multiplexing. Journal of Lightwave Technology, 2000,18(8): 1128-1138
    [47] Chapman W. B., Daiber A., Mcdonald M., et al. Temperature tuned exernal cavity diode laser with mcromachined silicon etalons. Conference on Lasers and Electro-Optics (CLEO). San Francisco California, 2004. 3500-3502
    [48]Amann Markus-Christian,Buus J.Tunable Laser Diode.1~(st)edition.London:Artech House Boston.1998.1-269
    [49]Gustafsson Y.,Hammerfeldt S.,Hammersberg J.,et al.Record output power(25mW)across C-band from widely tunable GCSR lasers without additional SOA.Electronics Letters,2003,39(3):292-293
    [50]Numsi T.1.5μm wavelength tunable phase-shift-controlled distributed feedback laser.Journal of Lightwave Technology,1992,10(2):199~205
    [51]Mukaihara T.,Nakagawa Y.,Nasu H.,et al.High power,low noise,low power consumption 25GHz×180 ch thermally tunable DFB laser module integrated with stable wavelength monitor,in Eur.Conf.Optical Communication(ECOC)Rimini.Italy,2003.718~719
    [52]Ishii H.,Oohashi H.,Kasaya K.,et al.High-power(40 mW)L-band tunable DFB laser array module using current tuning.Optical Fiber Communication(OFC),CA:Anaheim,2005.90~92
    [53]Pezeshki B.,Vail E.,Kubicky J.,et al.20-mW widely tunable laser module using DFB array and MEMS selection.IEEE Photonics Technology Letters,2002,14(10):1457~1459
    [54]Tayebati P.,Wang P.,Vakhshoori D.,et al.Half-symmetric cavity tunable microelectromechanical VSCEL with single spatial mode.IEEE Photonics Technology Letters,1998,10(12):1679~1681
    [55]Liu A.Q.and Zhang X.M.A review of MEMS external-cavity tunable lasers.Journal of Micromechanics and Microengineering,2007,17(1):1~13
    [56]Lu Y.,Zhang J.,Wang W.,et al.Wavelength tuning in two-section distributed Bragg reflector laser by selective intermixing of InGaAsP quantum well structure.Chinese Journal of Semiconductors,2003,24(9):903~906
    [57]高邵宏,黄德修,高彦锟,等.利用传输矩阵法分析取样光栅DBR半导体激光器.红外与激光工程,2005,34(4):415~460
    [58]董雷,张瑞康,王定理,等.SGDBR激光器中取样光栅的理论和实验研究.半导体学报,2008,29(2):356~360
    [59]Mizrahi V.Four channel fiber grating demultiplexer.Electronics Leaers,1994, 30(10):780~781
    [60]Vengsarkar A.M.,Pedrazzani J.R.,J.B.Judkins,et al.Long-period fiber-grating-based gain equalizers.Optics Letters,1996,21(3):336~338
    [61]Kashyap R.,Wyatt R.and Mckee P.F.Wavelength flattened saturated erbium amplifier using multiple side-tap Bragg grating.Electronics Letters,1993,29(11):1025~1026
    [62]Rochette M.,Guy M.,Larochelle S.Gain equalization of EDFA's with Bragg gratings.IEEE Photonics Technology Letters,1999,11(5):536~538
    [63]Shu X.,Jiang S.,Huang D.Fiber grating Sagnac loop and its multiwavelength-laser application.IEEE Photonics Technology Letters,2000,12(8):980~982
    [64]Numai T.1.5-μm wavelength tunable phase-shift-controlled distributed feedback laser.Journal of Lightwave Technol.,1992,10(2):199~206
    [65]Feies V.I.and Montrosset I.Design of two-section DBR laser operating at ITU frequencies only by grating current tuning.Journal of Lightwave Technol.,2003,21(6):1524~1430
    [66]Erdogan T.Fiber grating spectra.Journal of Lightwave Technol.,1997,15(8):1277~1294
    [67]Yriv A.and Nakamura M.Periodic structures for integrated optics.Journal of Quantum Electron.,1977,13(4):233~252
    [68]Yriv A.Coupled mode theory for guided-wave optics.Journal of Quantum Electronics,1973,9:919~933
    [69]Yamada M.and Sakuda K.Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach.Applied Optics,1987,26(16):3474~3478
    [70]Huang W.and Hong J.A transfer matrix approach based on local normal modes for coupled waveguide with periodic perturbations.Journal of Lightwave Technology,1992,10(10):1367~1375
    [71]戴一堂.新型光纤布拉格光栅的研究与应用:[博士学位论文]。清华大学:清华大学图书馆博士学位论文数据库,2006
    [72]Erdogan T.Cladding-mode resonances in short and long period fiber grating filters.Journal of the Optics Society America A,1997,14(8):760~1773
    [73]舒学文.光纤光栅及其在光子信息技术中的应用:[博士学位论文]。华中科技大学:华中科技大学图书馆博士学位论文数据库,2000
    [74]Feced R.,Zervas M.N.,and Muriel M.A.An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings.Journal of Quantum Electronics,1999,35(8):1105~1115
    [75]Dai Y.,Chen X.,Sun J.,et al.Wideband multichannel dispersion compensation based on a strongly chirped sampled Bragg grating and phase shifts.Optics Letters,2006,31(3):311~313
    [76]戎小戈.光纤光栅温度补偿原理.广西物理,2002,23(2):25~26
    [77]Shu X.,B.Gwandu A.L.,Liu Y.,et al.Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement.Optics Letters,2006,26(11):774~776
    [78]王目光,李唐军,卓峰,等.应变和温度同时测量光纤光栅传感器的研究.传感器技术,2001,20(9):10~15
    [79]陈长勇,乔学光,贾振安,等.一种新颖的光纤光栅应变与温度双参量传感器.光电子·激光,2003,14(8):787~790
    [80]Chen N.,Nakano Y.,Okamoto K.,et al,Analysis,fabrication,and characterization of tunable DFB lasers with chirped gratings,Journal of Selected Topics in Quantum Electronics,1997,3(2):541~547
    [81]Ishida O.Lightwave frequency tracking with a tunable DBR laser.Journal of Lightwave Technology,1991,9(9):1083~1094
    [82]Lemieux J.-F.,Bellemare A.,Latrasse C.,et al.Step-tunable(100 GHz)hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fiber Bragg grating.Electronics Letters,1999,35(1):904~906
    [83]Bergonzo A.,Jacquet J.,Gaudemaris D.De,et al.Widely Vernier tunable external cavity laser including a sampled fiber Bragg grating with digital wavelength selection.IEEE Photonics Technology Letters,2003,15(8):1144~1146
    [84] Bergonzo A., Brenot R., Picq M., et al. Fast wavelength switching using digitally tunable external cavity laser. Electronics Letters, 2004,40(10): 617-618
    [85] Bj(?)rk G. and Nilsson O. A new exact and efficient numerical matrix theory of complicated laser structures: properties of asymmetric phase-shift DFB lasers.Journal of Lightwave Technology, 1987, 5(1): 140-146
    [86] Hong J., Huang W., and Makino T. On the transfer matrix method for distributed-feedback waveguide devices. Journal of Lightwave Technology, 1992,10(12): 1860-1868
    [87] Davis M.G and O'Dowd R. F. A transfer matrix method based analysis of multielectrode DFB lasers. IEEE Photonics Technology Letters, 1991, 3(7):603-605
    [88] Tromborg B., Olesen H., Pan X., et al. Transmission line description of optical feedback and injection locking for Fabry-Perot and DFB lasers. Journal of Quantum Electronics, 1987,23(11): 1875-1889
    [89] Pan X., Olesen H. and Tromborg B. A theoretical model of multielectrode DBR lasers. Journal of Quantum Electronics, 1988,24(12): 2423-2432
    [90] Besnard P., Meziane B., Ait-Ameur K., et al. Microwave spectra in external-cavity semiconductor lasers: theoretical modeling of multipass resonances. Journal of Quantum Electronics, 1994,30(8): 1713-1712
    [91] Wood S. A., Plumb R., Robbins D. J., et al. Time domain modeling of sampled grating tunable lasers. IEE Proc.-Optoelectron., 2000,147(1): 43-48
    [92] Lavrova O. A. and Blumenthal D. J. Detailed transfer matrix method-based dynamic model for multisection widely tunable GCSR lasers. Journal of Lightwave Technology, 2000,18(9): 1274-1273
    [93] Hoefer W. J. R. The transmission-line matrix method-theory and applications.IEEE transactions on Microwave Theory and Techniques, 1985, 33(10): 882-893
    [94] Bergonzo A., Gohin E., Landreau J., et al. Tuning range extension by active mode-locking of external cavity laser including a linearly chirped fiber Bragg grating. Journal of Selected Topics in Quantum Electronics, 2003, 9(5):1118-1123
    [95] Willner A. E., and Shieh W. Optimal spectral and power parameters for all-optical wavelength shifting:single stage,fanout and cascadability.Journal of Lightwave Technology,1995,13(5):771~781
    [96]Connelly M.J.Wideband semiconductor optical amplifier steady-state numerical model.Journal of Quantum Electronics,2001,37(3):439~447
    [97]Bennett B.R.,Soref R.A.,DelAlamo J.A.Carrier-induced change in refractive index of InP,GaAs and InGaAsP.Journal of Quantum Electronics,1990,26(1):113~122
    [98]Henry C.H.Theory of the linewidth of semiconductor lasers.Journal of Quantum Electronics,1982,18(2):259~264
    [99]Sato H.and Ohya J.Theory of spectral lineewidth of external cavity semiconductor lasers.Journal of Quantum Electronics,1986,22(7):1060~1063
    [100]Fujita T.,Ohya J.,Ishizuka S.,et al.Oscillation frequency shift suppression of semiconductor lasers coupled to external cavity.Electronics Letters,1984,20:416~417
    [101]Debregeas-sillard H.,Fortin C.,Accard A.,et al.Nonlinear effets analysis in DBR lasers:applications to DBR-SOA and new double Bragg DBR.Journal of Selected Topics in Quantum Electronics,2007,13(5):1142~1150
    [102]Agrawal G.P.非线性光纤光栅.第一版.胡国降译.天津:天津大学出版社.1992.100~300
    [103]Inoue K.,Mukai T.,and Saitoh T.Nearly degenerate four-wave mixing in a traveling-wave semiconductor laser amplifier.Applied Physics Letters,1987, 51(14):1051~1053
    [104]Mukai T.,and Saitoh T.Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5μm traveling-wave semiconductor laser amplifier.Journal of Quantum Electroncis,1990,26(6):865~875
    [105]Mecozzi A.,Scotti S.,Ottavi A.D.,et al.Four-wave mixing in traveling-wave semiconductor amplifiers.Journal of Quantum Electronics,1995,31(4):689~699
    [106]Kothari N.C.,and Blumenthal D.J.Influence of gain saturation,gain asymmetry,and pump/probe depletion on wavelength conversion efficiency of FWM in semiconductor optical amplifiers.Journal of Quantum Electronics,1996,32(10):
    ??1810-1816
    [107] Diez S., Schmidt C, Ludwig R., et al. Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching. Journal of Quantum Electronics, 1997,33(5): 1131-1145
    [108] Heinecke H. Selective area growth of Ⅲ/Ⅴ materials in metalorganic molecular beam epitaxy (chemical beam epitaxy). Journal of Crystal Growth, 1994, 136(1-4):18-28
    [109] Kayser O. Selective growth of InP/GalnAs in LP-MOVPE and MOMBE/CBE.Journal of Crystal Growth, 1991, 107(1-4): 989-998
    [110] Delprat D., Ramdane A., Silvestre L., et al. 20-Gb/s integrated DBR laser-EA modulator by selective area growth for 1.55μm WDM applications. IEEE Photonics Technology Letters, 1997, 9(7): 898-900
    [111] Zhu J. T., Billia L., Bour D, et al. Performance comparison between integrated 40 Gb/s EAM devices grown by selective area growth and butt-joint overgrowth.Journal of Crystal Growth, 2004,272(1-4): 576-581
    [112] Li B., Hu X, Zhu H, et al. Integrated electroabsorption-modulated DFB laser by using an improved butt-joint method. Chinese Optics Letters, 2005, 2(4)
    [113] Stottz B., Dasler M., Sahlen O. Low threshold-current, wide tuning-range,butt-joint DBB laser grown with for MOVPE steps. Electronics Letters, 1993,29(8): 700-702
    [114] Binsma J. M., Geemert M. van, Heinrichsdorff F., et al. MOVPE waveguide regrowth in InGaAsP/InP with extremely low butt-joint loss. Proc. IEEE/LEOS Symposium. Benelux, 2001: 245-247
    [115] Djie H. S., Arokiaraj J., Mei T., et al. Large blueshift in InGaAs/InGaAsP laser structure using inductively coupled argon plasma-enhanced quantum well intermixing. Journal of Vacuum Science and Technology B, 2003, 21(4): L1-L4
    [116] Si S. K., Yeo D. H., Yoon H. H., et al. Area selectivity of In GaAsP-InP multiquantum-well intermixing by impurity free vacancy diffusion. Journal of Selected Topics in Quantum Electronics, 1998,4(4): 619-623
    [117] McLean C. J., McKee A., Lullo G, et al. Quantum well intermixing with high spatial slectively using a pluse laser technique. Electronics Letters, 1995, 31(15):
    ??1285-1286
    [118] Xia W., Pappert S. A., Zhu B., et al. Ion mixing of Ⅲ/Ⅴ compound semiconductor layered structures. Journal of Applied Physics, 1992, 71(6): 2602-2604
    [119] Haysom J. E., Poole P. J., Aers G. C, et al. Quantum well intermixing caused by nonstoichiometric InP. in Conf. Indium Phosphide and Related Materials.Williamsburg. VA, 2000: 56-59
    [120] Sudo S., Onishi H., Nakano Y., et al. Impurity-free disordering of InGaAs/InGaAlAs quantum wells on InP by dielectric thin cap films and characterization of its in-plane spatial resolution. Japan Journal of Applied Physics, 1996, 35(1): 1276-1279
    [121] Park H., Fang A., Kodama S., et al. Hybrid silicon evanescent laser fabricated with a silicon waveguide and Ⅲ/Ⅴ offset quantum wells. Optics Express, 2005,13(23): 9460-9464
    [122] Gotoda M., Nishimura T., Tokuda Y. A widely tunable SOA-integrated DBR laser by combination of sampled and superstructure gratings. Journal of Lightwave Technology, 2005,23(7): 2331-2336
    [123] Park J., Li X., Huang W., et al. Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors. Journal of Quantum Electronics, 2003, 39(11): 1415-1423
    [124] Johansson L. A., Akulova Y. A., Fish G A., et al. Sampled-grating DBR laser integrated with SOA and tandem electroabsorption modulator for chirp-control.Electronics Letters, 2004,40(1): 70-71
    [125] Barton J. S., Masanovic M. L, Sysak M. N., et al. 2.5-Gb/s error-free wavelength conversin using a monolithically integrated widely tunable SG-DBR-SOA-MZ transmitter and integrated photodetector. IEEE Photonics Technology Letters,2004,16(6): 1531-1533
    [126] Xie H., Zhou F., Wang B., et al. Modified holographic exposure to fabrication varied Bragg grating in an identical chip. Chinese Journal of Semiconductors,2005 26(7): 1287-1290,
    [127] Vieu C, Carcenac F., Pepin A, et al. Electron beam lithography: resolution limits and applications. Applied Surface Science, 164(1-4): 111-117
    [128] Verdiell J.-M., Koch T. L., Tennant D. M., et al. 8-wavelength DBR laser array fabricated with a single-step Bragg grating printing technique. IEEE Photonics Technology Letters, 1993, 5(6): 619-621
    [129] Pisignano D., Persano L., Visconti P., et al. Oligomer-based organic distributed feed back lasers by room-temperature nanoimprint lithography. Applied Physics Letters, 2003, 83(13): 2545-2547
    [130] Reboud V., Lovera P., Kehagias N., et al. Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography. Applied Physics Letters, 2007, 91(15): 1101-1103
    [131] Viheriala J. P., Tommila J., Rytkonen T., et al. Longitudinally single mode laser-diode fabricated with nanoimprint lithography. Conference on Lasers and Electro-Optics (CLEO). San Jose. California, 2008: CFY6 1-3