1. [地质云]滑坡
基于内容的图像检索技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机、网络以及多媒体技术的迅速发展和应用,数字图像的数量正以惊人的速度增长。如何有效地组织、管理和检索大规模的图像数据库,已成为目前检索领域一个相当重要的研究课题。由于人工进行标注的巨大的工作量,传统的基于关键字的信息检索技术很难满足用户的要求,这就需要有一种针对类型复杂图像库的有效检索方式。基于内容的图像检索技术正是为了解决如何有效地从图像数据库中检索出相关图像的问题。近年来,此项技术已成为国内外广泛关注的焦点,在许多领域都有了广泛地应用。本文主要围绕基于内容的图像检索中若干关键技术展开研究,主要研究成果如下:
     首先针对高维的图像彩色特征向量间的相关性和冗余对聚类、检索的影响,本文提出了自适应局部保持映射的图像特征降维算法(ALPP)。将聚类引入降维算法中来解决特征空间维数的自适应确定问题,使降维结果既保证了最大化地消除高维向量间的相关性和冗余,又不破坏原始数据近邻间的空间拓扑结构。实验结果表明,基于ALPP算法的图像检索的查准率和查全率相对于LPP和PCA算法,具有较高的检索精度。
     其次在基于内容的图像检索中,如果描述图像内容的彩色特征向量维数很高,则所建立的图像特征库和相似图像匹配检索过程中的计算复杂度将会严重增加。本文根据图像特征在原空间的分布情况,提出了一种改进的可变近邻点的LLE数据降维方法(VKNLLE),使得降维后的特征向量有效地保持了其在高维空间中的拓扑结构。实验结果表明,VKNLLE方法在基于内容的图像检索中,相对于LLE和PCA算法取得了较高的检索准确率。
     最后本文提出了一种基于感兴趣区域的多特征综合检索的图像检索算法(RBMCR),即通过兴趣点检测确定图像中的感兴趣区域,在确定的感兴趣区域中提取颜色和空间两种底层特征,采用体现不同特征的加权和进行相似性度量。实验结果表明,本文提出的基于颜色和空间特征相融合的算法,检索结果要好于靠单一底层特征进行检索的结果;基于局部兴趣点的图像检索算法在查准率和查全率上要优于基于全局特征的算法。
With the rapid development and application of the computer, network and multimedia techniques, the number of digital image database is growing at a shocking speed. How to effectively organize, manage and retrieve the large-scale image database becomes a very important subject in the field of information retrieval. In this research field, image database system plays an important role in the multimedia information system because of its wide employment in many important applications. The manual labeling is labor-consuming, therefore, it is very difficult for traditional information retrieval technology based on key words to achieve an accurate image description and retrieval. The performance can not satisfy the user's request, so we need to find a kind of effective retrieval mode concerning the complex image database. Content-based image retrieval (CBIR) is a set of techniques to solve the problems based on automatically derived image features. In recent years CBIR is a very hot research subject and has been applied in many fields.
     In this dissertation, lots of research work has been done around some key techniques of CBIR, which include dimensionality reduction of high-dimensional image feature vectors, region of interest location and feature fusion and so on. The present study is the current research focus on image processing and information retrieval. The main contributions of this dissertation are summarized as follows:
     We proposed the dimensionality reduction algorithm—Locality Preserving Projections(LPP) to remove relation and redundancy of the high dimensional color feature vector of the image. It is linear, but it not only has many linear algorithm merits, such as fine decorrelation, fast calculation and reliable result, but also it takes the nearest neighbor of the image color feature vector into consideration, so that it maintains the original nonlinear topology structure. The algorithm is described as follows: first, it finds k nearest neighbors of every color feature vector; then it constructs the matrix of weights based on the distance between the vector and its neighbor; at last, low dimension vectors are acquired when high-dimensional vectors are projected to low-dimension space though that matrix of weights.
     During the study of the LPP, we find that the number of the dimension we get after dimensionality reduction affects the retrieval result greatly. If the number is too large, the relevance of high-dimension color feature vectors can't be clearly removed. On the opposite, if the number is too small, the overlap occurs when high-dimension vector projects to low-dimension vector and the original nonlinear topological structure will be destroyed. All these will reduce the precisions of the retrieval.
     In this dissertation, for resolving the problem of image features dimension reduction in image retrieval based on color features, image features dimension reduction algorithm based on Adaptive Locality Preserving Projection is proposed(ALPP). On the basis of considering the relationship between every color feature vector and its neighbors, by evaluating the effect of Bayesian criteria on image classifying, clustering operation is introduced into dimension-reduction algorithm to determine adaptively the number of dimensions of feature space. It ensures the dimension reduction result both to eliminate the correlation and redundancy among the high dimensional color feature vectors and to preserve the nonlinear topological structure of original data. The findings of the experiment show that due to Corel image database, when the number of returned images is 50, the precision and the recall for ALPP algorithm are higher in retrieval performance than it for PCA algorithm.
     In CBIR, if the dimension of the image feature is very high, the complexity of building the image feature database and retrieving the similar images will increase seriously. Locally Linear Embedding(LLE) is a algorithm of nonlinear dimensionality reduction. It reconstructs the color feature vectors by its nearest neighbors to describe the global nonlinear structure. Firstly the algorithm finds the k-nearest neighbors of the color feature vector. Then it calculates the matrix of weights with which nearest neighbors of the color feature vector can reconstruct it. Finally, the algorithm computes the low-dimensional embedding vectors which can be reconstructed by the nearest neighbors and the local matrix of weights. LLE takes the local nearest neighbors into consideration, which preserves the nonlinear topological structure of original space after being embedded into low-dimensional space.
     While reducing the vector dimension with LLE algorithm, the number of nearest neighbors should be determined. In LLE algorithm, the precision of retrieval varies greatly with different number of nearest neighbors. If the number is too small, the embedding will not reflect the nonlinear topological structure. If it is too large, the embedding will lose its nonlinear character, and produce overlaps in low-dimensional space. All of these will influence the precision of the retrieval.
     In this dissertation we propose a Variable K Neighbors LLE (VKNLLE) method based on the distribution of the original image feature. The VKNLLE method can reduce the color feature vectors dimension with keeping their original nonlinear topological structure into a lower dimension space. The experimental results show that the proposed VKNLLE method can achieve higher precision rate in CBIR.
     In this dissertation, in view of the traditional content-based image retrieval algorithms, we usually extract the overall features of image, seldom considering image spatial information. But many users may be merely interested in some target in image. In this condition, the image global features will no longer be effective. So we attempt to extract layer feature in the region of interest in color image .This dissertation makes use of the interest point detection to determine the region of interest in color image. Interest point is an important local feature. It collects a lot of important verge information of color image. We adopt Harris algorithm to detect the interest point because there is Gaussian filter in Harris operator in order to filter the noise. The primary work is converting color images to gray scale image before interest point detection, we will do some pretreatment with the number of interest point and distribution in order to determine the region of interest in color image. After the pretreatment of interest point is completed, we can determine the region of interest in color image.
     In this dissertation a new ROI-Based Multi-features Comprehensive Retrieval algorithm(RBMCR) is proposed. We extract two low-layer features, the color and spatial feature in the region of interest. Firstly we make use of people's sensitive perception in color to nonuniformed quantizing and forming a feature vector as new color feature in the HSV color space. Then we divide the region of interest into blocks and identify the pixel of the biggest interest point value in each sub-block. We make use of the biggest interest point value in each sub-block and the relative positions relationship between the interest point and those in the adjacent sub-block in image to construct a new spatial feature vector. Finally we adopt the weighted sum of two different methods those reflect different feature vectors as similarity measurement.
     The algorithm we have proposed does feature extraction only in the region of interest, and it will significantly reduce the data processing time. The precision and the recall for the algorithm are higher in retrieval performance. The experimental results show that the proposed RBMCR algorithm can achieve higher precision-recall rate performance, and the retrieval results of the RBMCR algorithm are better than those with single low-level feature. The image retrieval algorithm based on region of interest is superior to those algorithms based on global feature according to the precision-recall rate.
引文
[1]Kato T.Database architecture for content-based image retrieval[C].Proc.of SPIE,San Jose,CA,USA,1992,1662:112-123.
    [2]庄越挺,潘云鹤,吴飞.网上多媒体信息分析与检索[M].北京:清华大学出版社,2002.
    [3]章毓晋.基于内容的视觉信息检索[M].北京:科学出版社,2003.
    [4]周明全,耿国华,韦娜.基于内容图像检索技术[M].北京:清华大学出版社,2007.
    [5]马修军.多媒体数据库与内容检索[M].北京:北京大学出版社,2007.
    [6]Swain M F,Ballard D H.Color Indexing[J].International Journal of Computer Vision,1991,7(1):11-32.
    [7]Kherfi M L,Ziou D,Bernardi A.Image Retrieval From the World Wide Web:Issues,Techniques,and Systems[J].ACM Computing Surveys,2004,36(1):35-67.
    [8]Remco C.Veltkamp,Mirela Tanase.Content-Based Image Retrieval Systems:A Survey[R].Department of Computing Science,Utrecht University,2001.
    [9]Mehmet Emin Donderler,Ediz Saykol.BilVideo:Design and Implementation of a Video Database Management System[J].Multimedia Tools and Applications.2005,27(1):79-104.
    [10]Pentland A P,Picard R,Sclaroff S.Photobook:Content-based manipulation of image databases[J]International Journal of Computer Vision.1996.18(3):233-254.
    [11]Ma W Y,Manjunath B S.NeTra:a toolbox for navigating large image databases [C].Proc.of International Conference on Image Processing,Santa Barbara,CA,USA,1997,1:568-571.
    [12]Jia Li,Wang J Z.Automatic Linguistic Indexing of Pictures by a statistical modeling approach[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(9):1075-1088.
    [13]黄祥林,沈兰荪.基于内容的图像检索技术研究[J].电子学报,2002,30(7):1065-1071.
    [14]Datta R,Li J,Wang J Z.Content-Based Image Retrieval-Approaches and Trends of the New Age[C].Proc.of International Workshop on Multimedia Information Retrieval,Singapore,ACM,2005:253-262.
    [15]Lu Y,Hu C,Zhou X,et al.A unified framework for semantics and feature based relevance feedback in image retrieval systems[C].Proc,of ACM Multimedia Conference,2000:31-37.
    [16]Zhu X Q,Zhang H J.New query refinement and semantics integrated image retrieval system with semiautomatic annotation scheme[J].Journal of Electronic Imaging,2001,16(3):533-566.
    [17]Han J W,Guo L.A new image retrieval model supporting query by semantics and example[C].IEEE Conference on Image Processing.New York,USA,2002:31-38.
    [18]Chang S F,Chen W,Sundaram H.Semantic visual templates:Linking visual features to semantics[C].Proc,of IEEE ICIP,Chicago,USA,1998:531-535.
    [19]Smith J R,Chang S F.Visually searching the web for content[J].IEEE multimedia,1997,4(3):12-20.
    [20]Smith K D,Paranjape R B.Mobile agents for web-based medical image retrieval [C].IEEE Canadian Conference on Electrical and Computer Engineering,Ottawa,Canada,1999:966-970.
    [21]Chang N S,Fu K S.Query-by-pictorial-example[C].IEEE Computer Society's Third International Computer Software and Applications Conference,IEEE,1979:325-330.
    [22]Overview of the MPEG-7 Standard(version5.0).ISO/IECJTC1/SC29/WG11/N4031,2001.
    [23]Oliver Avaro,Philippe Salembier.MPEG-7 Systems:Overview[J].IEEE Transaction on circuit and systems for video technology,2001,11(6):760-764.
    [24]许亚茹.基于内容的图像检索与MPEG-7[J].电子科技,2004,(10):48-52.
    [25]Horst Eidenberger.A Video Browsing Application Based on Visual MPEG-7Descriptors and Self-Organising Maps]J].International Journal of Fuzzy Systems,2004,6(3)124-137.
    [26]魏宝刚,李向阳,鲁东明,等.彩色图像分割研究进展[J].计算机科学,1999,26(4):59-62.
    [27]徐旭,朱淼良,梁倩卉,等.一种用于CBIR系统的主色提取及表示方法[J].计算机辅助设汁与图形学学报,1999,11(5):385-388.
    [28]Rafael C.Gonzalez,Richard E.Woods.阮秋琦,阮宇智译.Digital Image Processing[M].北京:电子工业出版社,2003.
    [29]Michael Lawrence,Andrew Rau-Chaplin.The OLAP-Enabled Grid:Model and Query Processing Algorithms[C].Proc.of 20th international Symposium on High-Performance Computing in an Advanced Collaborative Environment,2006:1-7.
    [30]Aibing Rao,Rohini K.Srihari,Zhongfei Zhang.Spatial Color Histograms for Content-Based Image Retrieval[C].Tools with artificial intelligence,Proceedings of 11th IEEE International Conference,1999:183-186.
    [31]Sural Shamik,Qian Gang,Pramanik Sakti.Segmentation and histogram generation using the HSV color space for image retrieval[C].IEEE International Conference on Image Processing,2002,2:589-592.
    [32]Smith J R,Chang S F.Single Color Extraction and Image Query[C].IEEE Proc.of the 1995 International Conference on Image Processing,1995:528-531.
    [33]张磊.基于内容的图像检索中人机协同问题的研究[D].北京:清华大学,2001.
    [34]何姗,郭宝龙,洪俊标.基于区域熵的图像检索[J].计算机工程,2006,32(18):214-216.
    [35]Hsin-Teng,HU W C.A rotationally invariant two-phase scheme for corner detection[J].Pattern Recognition Letters,1996,28(5):819-828.
    [36]Junding Sun,Ximin Zhang,Jiangtao Cui,et al.Image retrieval based on color distribution entropy[J].Pattern Recognition Letters,2006,27:1122-1126.
    [37]Stricker M,Orengo M.Similarity of color images[J].SPIE Storage and Retrieval for Image and Video Databases Ⅲ,1995,2185:381-392.
    [38]John R.Smith and Shih-Fu Chang.Tools and techniques for color image retrieval[C].Proc.of SPIE:Storage and Retrieval for Image and Video Database,1995,2670:1-12.
    [39]曹莉华,柳伟,李国辉.基于多种主色调的图像检索算法研究与实现[J].计算机研究与发展,1999,36(1):96-100.
    [40]Pass G,Zabih R,Miller J.Comparing images using color coherence Vectors[C].Proc.of the fourth ACM Conference on Multimedia,New York,NY,USA:ACM,1997:65-73.
    [41]Mao J,Jain A K.Texture classification and segmentation using multiresolution simultaneous autoregressive models[J].Pattern Recognition,1992,25(2):173-188.
    [42]John R.Smith,Shih-Fu Chang.Automated binary texture feature sets for image retrieval[C].In Proc.IEEE Int.Conf.Acoust.,Speech,and Signal-Processing,Atlanta,GA,USA,1996,4:2239-2242.
    [43]Haralick R M,Shanmugam K.Texture features for image classification[J].IEEE Trans.On SMC,1973,3(6):610-621.
    [44]Tamura H,Mori S,Yamawaki T.Texture features corresponding to visual perception[J].IEEE Trans.On SMC,1978,8(6):460-473.
    [45]Chang T,Jay Kuo CC.Texture analysis and classification with tree-structured wavelet transform[J].IEEE Trans.on Image Processing,1993,2(4):429-441.
    [46]A.Laine,J.Fan.Texture classification by wavelet packet signatures[J].IEEE Trans.Pattern Analysis and Machine Intelligence,1993,15(11):1186-1191.
    [47]Gene CH Chuang,Jay Kuo CC.Wavelet descriptor of planar curves:Theory and applications[J].IEEE Trans.Image Processing,1996,5(1):56-70.
    [48]庄越挺.智能多媒体信息分析与检索的研究[D].浙江:浙江大学,1998.
    [49]Ma W Y,Manjunath B S.Edge flow:a framework of boundary detection and image segmentation[C].IEEE Int.Conf.on Computer Vision and Pattern Recognition,Puerto Rico,1997:744-749.
    [50]Chang S K,Shi Q Y,Yan C Y.Iconic indexing by 2-D strings[J].IEEE Trans.Pattern Anal.Machine Intell.,1987,9(3):413-428.
    [51]章毓晋.基于语义视觉信息检索的进展[J].科学技术与工程,2004,4(4):321-324.
    [52]王崇骏,杨育彬,陈世福.基于高层语义的图像检索算法[J].软件学报,2004,15(10):1461-1469.
    [53]Voorhees H,Poggio T.Computing texture boundaries from images[M].1988:333-367.
    [54]Zhang H J,Zhong D.A scheme for visual feature based image retrieval[C].Proc.of SPIC conf.on Storage and Retrieval for Image and Video Databases Ⅲ,San Jose,1995:36-46.
    [55]吴玲达,贺玲,蔡益朝.高维索引机制中的降维方法综述[J].计算机应用研究,2006,(12):4-7.
    [56]Weber R,Schek H,Blott S.A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces[C].Proc,of the ACM Very Large Data Bases,New York,1998:194-205.
    [57]Ferhatosmanoglu H,Tuncel E,Agrawal D,et al.Vector approximation based indexing for non-uniform high dimensional data sets[C].Proc,of the 9th ACM International Conference on Information and Knowledge Management,McLean,Virginia,USA,2000:202-209.
    [58]Ye H J,Xu G Y.Fast search in large-scale image database using vector quantization[C].Proc,of the International Conference on Image and Video Retrieval,Lecture Notes in Computer Science,Urbana,USA,2003:458-467.
    [59]Ferhatosmanoglu H,Tuncel E,Agrawal D,et al.Approximate nearest neighbor searching in multimedia databases[C].Proc,of the 17th International Conference on Data Engineering,Wanshington.DC,USA,2001:503-511.
    [60]Ferhatosmanoglu H,Tuncel E,Agrawal D,et al.High dimensional nearest neighbor searching[J].Information Systems Journal,2006,31(6):512-540.
    [61]Schmid C,Mohr R.Local gray value invariants for image retrieval[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(5):530-535.
    [62]谭晓阳,孙正兴,张福炎.交互式图像检索中的相关反馈技术研究进展[J].南京大学学报,2004,40(5):639-648.
    [63]HE X F,KING O,MA W Y,et al.Learning a semantic space from user's relevance feedback for image retrieval[J].IEEE Transaction on Circuit and System for Video Technology,2004,13(1):39-48.
    [64]L.Zhang,F.Z Lin,B.Zhang.Support vector machine learning for image retrieval[C].IEEE Conference on Image Processing,Greece,2001:21-24.
    [65]吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979.
    [66]Lu Guo jun,Atul sajjanhar.On performance measurement of multimedia information retrieval systems[C].International Multimedia Conference,Ottawa, Canada, 2001: 21-28.
    [67] Squire D M , Pun T. A comparison of human and machine assessments of image similarity for the organization of image databases[C]. Proc. of the 10th Scandinavian Confrence on Image Analysis, Lappeenranta, Finland, 1997: 51- 58.
    [68] Harold Hotelling. Analysis of a complex of statistical variables into principal components[M]. Warwick & York, 1933.
    [69] Richard O D, Peer E H, David G S. Pattern Recognition, Second Edition [M].Wiley Interscience, Hoboken, NJ, 2001.
    [70] L. Lotikar, R. Kothari. Fractional-step dimensionality reduction[J].IEEE Trans. Pattern Analysis and Machine Intelligence,2000, 22(6): 623-627.
    [71] G. Dai, D. Y. Yeung, Y. T. Qian. Face recognition using a kernel fractional-step discriminant analysis algorithm[J].Pattern Recognition,2007, 40(1): 229-243.
    [72] A. J. Bell, T. J. Sejnowski. An Information-Maximization Approach to Blind Separation and Blind Deconvolution[J].Neural Computation,1995, 7(6):1129- 1159.
    [73] A. Hyvarinen. Fast and Robust Fixed-Point Algorithms for Independent Component Analysis[J].IEEE Trans. Neural Networks, 1999, 10(3): 626-634.
    [74] Ifarraguerri. A, Chein-I Chang. Unsupervised hyperspectral image analysis with projection pursuit[J].IEEE Trans. Geoscience and Remote Sensing,2000:2529- 2538.
    [75] B. Scholkopf, A. Smola, K. Miiller. Kernel principal component analysis[M]. Advances in Kernel Methods-Support Vector Learning, Cambridge, MA: MIT Press, 1999.
    [76] G. Baudat, F. Anouar. Generalized discriminant analysis using a kernel approach [J] .Neural Computation, 2000, 12: 2385-2404.
    [77] F. R. Bach, M. I. Jordan. Kernel independent component analysis [J]. Journal of Machine Learning Research,2002, 3:1-48.
    [78] He X F. Locality Preserving Projections [D]. Chicago, USA: The University of Chicago, 2005.
    [79] Xin Zheng, Deng Cai, XiaoFei He, et al. Locality Preserving Clustering for Image Database [C]. Proc. of the 12th Annual ACM International Conference on Multimedia, 2004, 885-891.
    [80] Yang Jian, Zhang David, Yang Jingyu, et al. Globally Maximizing, Locally Minimizing: Unsuperbvised Discriminant Projection with Applications to Face and Palm Biometrics [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2007, 29(4): 650-664.
    [81] Shuicheng Yan, Dong Xu, Benyu Zhang, et al.Graph Embedding and Extensions: A General Framework for Dimensionality Reduction[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.
    [82] Zhong Jin, Jing-Yu Yang, Zhong-Shan Hu, et al. Face recognition based on the uncorrelated discriminant transformation [J]. Pattern Recognition Society, 2001, 34: 1405-1416.
    [83] Jain AK, Flynn PJ. Image segmentation using clustering[M]. Advances in Image Understanding: A Festchrift for Azriel Rosenfeld, Piscataway: IEEE Press, 1996: 65-83.
    [84] Cades I., Smyth P, Mannila H. Probabilistic modeling of transactional data with applications to profiling,visualization and prediction, sigmod[C]. Proc. of the 7th ACM SIGKDD, SanFrancisco: ACM Press, 2001:37-46.
    [85] Jain AK, Murty MN, Flynn PJ.. Data clustering: A review [J]. ACM Computing Surveys,1999,31(3):264-323.
    [86] Dunn J. C. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well Separated Cluster[J]. J Cybernet, 1974 (3): 32-57.
    [87] Bezdek J C, A Convergence Theorem for The Fuzzy ISODATA Clustering Algorithm[J]. IEEE PAMI, 1980,1(2):1-8.
    [88] Lee D, Seung H. Cognition. The manifold ways of perception[J].Science, 2000, 290:2268-2269.
    [89] Tenenbaum J, de Silva V, Langford J. A Global Geometric Framework for Nonlinear Dimensionality Reduction[J].Science, 2000, 290:2319-2323.
    [90] Roweis S. T., Saul L. K.. Nonlinear dimensionality reduction by locally linear embedding[J].Science, 2000, 290:2323-2326.
    [91] Thomas L. Griffiths, Michael L Kalish. A Multidimensional Scaling Approach to Mental Multipication[J].Memory & Cognition,2002,30(1):97-106.
    [92] Belkin M, Niyogi P.. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation[J]. Neural Computation, 2003, 15:1373-1396.
    [93] Donoho D, Grimes C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data[C].Proc. of the National Academy of Sciences, 2003, 100(10):5591-5596.
    [94] Kilian Q. Weinberger and Lawrence K. Saul.Unsupervised Learning of Image Manifolds by Semidefinite Programming[J].International Journal of Computer Vision,2006,70(1):77-90.
    [95] Tong Lin, Hongbin Zha. Riemannian Manifold Learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2008, 30 (5):796-809.
    [96] F. C. Wu, Z. Y. Hu. The LLE and a linear mapping [J]. Pattern Recognition, 2006, 39:1799-1804.
    [97] A. Hadid, O. Kouropteva, M. Pietikainen. Unsupervised learning using locally linear embedding: experiments with face pose analysis [J]. Proc. of the 16th International Conference on Pattern Recognition, 2002, 1:111-114.
    [98] Hong C, D. Y. Yeung. Robust locally linear embedding[J]. Pattern Recognition, 2006,39:1053-1065.
    [99]T.Bozkaya,M.Ozsoyoglu.Distance-based indexing for high-dimensional metric spaces[C].ACM SIGMOD International Conference on Management of Data,1997,26(2):357-368.
    [100]Xiaofei He,Deng Cai,Shuicheng Yan,et al.Neighborhood Preserving Embedding[C].Proc.of the 10th IEEE International Conference on Computer Vision,2005.
    [101]Sanjoy K.Saha,Amit K.Das,Bhabatosh Chanda.Image retrieval based on indexing and relevance feedback[J].Pattern Recognition Letters,2007,28:357-366.
    [102]Tzu-Chuen Lu,Chin-Chen Chang.Color image retrieval technique based on color features and image bitmap information[J].Processing and Management,2007,43:461-472.
    [103]Cordelia Schmid,Rrger Mohr,Christian Bauckhage.Evaluation of interest point detectors[J].International Journal of Computer Vision,2000,37(2):151-172.
    [104]Smeulders A.,Worring M.,Santini S.Content-Based Image Rrtrieval at the End of the Early Years[J].IEEE Trans.Pattern Analysis and Machine Intelligence,2000,22(12):1349-1380.
    [105]Carson C.,Thomas M.,Belongie S.,et al.Blobworld:a system for region-based image indexing and retrieval[C].Proc.of the 3rd International Conference on Visual Information Systems,1999,1614:509-517.
    [106]Sural Shamik,Qian Gang,Pramanik Sakti.Segmentation and histogram generation using the HSV color space for image retrieval[C].IEEE International Conference on Image Processing,2002,2:589-592.
    [107]Tian Q,Wu Y,Huang T S.Combine User Defined Region-of-Interest and Spatial Layout for Image Retrieval[C].IEEE 2000 International Conference on Image Processing,Vancouver,BC,Canada.2000,3:746-749.
    [108]Schmid C,Mohr R.Local gray value invariants for image retrieval[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(5):530-535.
    [109]John Canny.A computational approach to edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.
    [110]侯北平,李平,宋执坏.基于滑动窗口的自适应角点检测研究[J].电路与系统学报,2006,11(6):133-137.
    [111]张锋利.基于内容的图像检索方法研究[D].吉林大学硕士学位论文,2005.
    [112]Medioni G.,Yasumoto Y.Corner detection and curve representation using cubic B-spline[J].Compute Vision,Graphics,Image Process,1987,39(3):267-278.
    [113]Rosenfeld A,Johnston E,Angle detection on digital curves[J].IEEE Trans.Computer,1973(22):875-878.
    [114]Freeman H,Davis L S.A Corner-finding Algorithm for Chain-coded Curves[J]. IEEE Trans.Computer,1977,26:297-303.
    [115]Moravec H P.Towards automatic visual obstacle avoidance[C].IEEE International Conference on Robotics and Automation,1977:584-596.
    [116]Ji Q,Haralick R M.Corner detection with covariance propagation[C].IEEE Computer Society Conference on Computer Vision and Pattern Recognition,San Juan,Puerto Rico,1997:362-367.
    [117]Yeh C H.Wavelet-based corner detection using eigenvectors of covariance matrices[J].Pattern Recognition Letters,2003,24(15):2797-2806.
    [118]Kitchen L,Rosenfeld A.Analysis of Gray Level Corner Detection[J].Pattern Recognition Letters,1999,20(2):149-162.
    [119]荆仁杰.计算机图像处理[M].浙江大学出版社,1990.
    [120]Zhang L,Lin F Z,Zhang B.A CBIR Method Based on Color-Spatial Feature[C].Proc.of the IEEE Region the 10th Conference,Cheju Island,South Korea,1999,1:166-169.