1. [地质云]滑坡
M:Al_2O_3(M=Cr,Ti)纳米粉体及透明陶瓷的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以Al_2O_3为基质的激光材料具有硬度高,透光性与光学均匀性好,热导率高,化学成分与结构稳定等优点,目前主要有红宝石(Cr~(3+):Al_2O_3)和钛宝石(Ti:Al_2O_3)。红宝石晶体是最早和最重要的固体激光材料,作为产生可见光区域的高功率激光工作物质目前仍被广泛应用。钛宝石晶体是最佳宽带可调谐激光晶体,具有增益带宽,高饱和通量、高激光破坏阈值等特点,是综合性最好、应用最广泛的可调谐激光材料。但是单晶制作成本很高,高掺杂困难,生长单晶尺寸也受到很大限制。相对于单晶而言,透明陶瓷因为制备周期短、生产成本低、生产效率高,而且易获得大尺寸、易于加工、掺杂浓度高等优点,因此成为近年来材料领域的一个研究热点。
     本文主要以Cr~(3+):Al_2O_3透明陶瓷为研究对象。研究了不同工艺制备Cr~(3+):Al_2O_3、Ti:Al_2O_3纳米粉体的性能,确定了纳米粉体最佳制备工艺条件。研究了制备工艺条件、Cr~(3+)离子掺杂浓度等对Cr~(3+):Al_2O_3透明陶瓷性能的影响。利用热重/差热分析(TG/DTA)、红外光谱(IR)、X射线衍射(XRD)、透射电镜(TEM)、扫描电镜(SEM)、电子能谱(EDS)、荧光光谱等技术对前驱物、纳米粉体及透明陶瓷进行表征。
     1. Cr~(3+):Al_2O_3纳米陶瓷粉体的制备
     采用共沉淀法首次制备出Cr~(3+):Al_2O_3纳米陶瓷粉体。以碳酸氢铵为沉淀剂,并与硝酸盐的混合溶液反应得到NH_4MO(OH)HCO_3 (M= Al~(3+)、Cr~(3+))前驱体,在1200℃下保温1.0h得到纯α-Al_2O_3晶相;研究分散剂、反应物初始浓度、pH值、Cr~(3+)掺杂浓度等对粉体的形貌以及发光性能的影响。(NH_4)_2SO_4的引入提高了纳米粉体的分散性,粉体颗粒分布均匀,平均粒径为58nm;样品的激发峰位于429nm和588nm,分别对应着Cr~(3+)离子~4A_2→~4T_2和~4A_2→~4T_1的能级跃迁;发射峰值位于693nm和668nm,693nm对应Cr~(3+)离子~4A_2组态间~2E_g→~4A_(2g)跃迁的R荧光谱线,而668nm为“蓝移”的另一组R线与Cr~(3+)离子~2T_(1g)→~4A_(2g)辐射跃迁的T(T_1,T_2,T_3)组荧光谱线在此处相互叠加。Cr~(3+)离子的最佳掺杂浓度为1.0wt%。
     采用低温燃烧法首次制备Cr~(3+):Al_2O_3纳米粉体。研究以不同燃料(尿素、柠檬酸)制得粉体的性能。以尿素为燃料制得的粉体严重团聚。以柠檬酸为燃料(溶胶.凝胶低温燃烧法)制成的凝胶于500℃使之发生燃烧反应,再将燃烧产物于1000℃煅烧1.0h后,为α-Al_2O_3的单相氧化物粉体,乙二醇作为分散剂可提高粉体的分散性。两种不同燃料制备的纳米粉体的激发峰位于429nm和588nm,发射峰值位于693nm和668 nm。Cr~(3+)离子的最佳掺杂浓度均为1.0wt%。
     2.Ti:Al_2O_3纳米陶瓷粉体的制备
     采用共沉淀法、溶胶-凝胶低温燃烧法合成了Ti:Al_2O_3纳米粉体。共沉淀法制备的前驱体于1200℃煅烧1.0h得到了平均粒径小于50nm、形状为球形或类球形纯的α-Al_2O_3晶相,Ti离子掺杂浓度为2.0wt%时,也无中间相生成。溶胶-凝胶低温燃烧法制的前驱物于1000℃、保温1.0h直接得到纯的α-Al_2O_3晶相。
     3.Cr~(3+):Al_2O_3透明陶瓷的制备
     确定了共沉淀法制备的Cr~(3+):Al_2O_3纳米粉的烧结性能好于溶胶-凝胶低温燃烧法制备的粉体。分析了添加剂对陶瓷性能的影响:添加剂的量均应有最佳成分点,越接近该点,烧结试样性能将会越好;MgO的添加量为0.1wt%,La_2O_3的添加量为0.15wt%,Y_2O_3的添加量为0.05wt%。烧结温度和保温时间对陶瓷的微观结构、发光性能均有较大的影响,合适的烧结温度为1700℃,保温时间为10-15h。采用氢气气氛于1700℃烧结10h得到的Cr~(3+):Al_2O_3透明陶瓷的透过率在40%以上。Cr~(3+)掺杂浓度在1.25wt%,陶瓷在688nm、693nm处也具有很好的锐线荧光发射,这对激光的输出提供了可能,且实现了较高浓度的掺杂。Cr_2O_3在Cr~(3+):Al_2O_3陶瓷中主要有两个作用:①提供发光中心;②促进陶瓷烧结。
Laser media with Al_2O_3 as host materials have characteristics of high hardness, good transmittance and optical uniformity, as well as high thermal conductivity, stable chemical composition and structures. There are mainly two types of laser materials using Al_2O_3 as host materials, that is ruby (Cr~(3+):Al_2O_3) and sapphire (Ti:Al_2O_3). Ruby laser is the earliest and most important solid laser. It is still used widely in high power laser of visible wavelength. Sapphire is the optimal wide-band tunable laser crystal, and has characteristics of wide-gain, high-saturation flux and high laser damage threshold, so it is widely used as tunable laser materials. But single crystal has some restrictions, such as high-cost, low doping concentration and small size etc. Comparing with single crystal, transparent ceramics become a hot research field because of its characteristics of short producing cycle, low cost, high productivity, and transparent ceramics also possesses uniform optical property and high doping rate.
     In this paper, preparation method and properties of Cr~(3+):Al_2O_3 and Ti:Al_2O_3 nano-powders were researched, the optimum parameters and the influences of fabrication parameters and doping rate of Cr~(3+) on Cr~(3+):Al_2O_3 ceramic properties were studied. The properties of precursor, nano-powders and transparent ceramics were characterized by TG/DTA, IR, XRD, TEM, SEM, EDS methods and fluorescence spectrum test.
     1. Preparation of Cr~(3+):Al_2O_3 nano-powders of ceramics
     Cr~(3+):Al_2O_3nano-powders was firstly prepared by co-precipitation method using NH_4HCO_3 as the precipitant. During the process, NH_4MO(OH)HCO_3 (M= Al~(3+)、Cr~(3+)) precursor was obtained , the precursor was transformed into pureα- Al_2O_3 after calcined at 1200℃for 1h. The influences of dispersant, beginning concentration of reactant, pH value, doping concentration of Cr~(3+) on the morphology and luminescence properties of powders were studied. The adding of (NH_4)_2SO_4 improved the dispersion property of the powders, the particles distributed uniformly with diameter of 58nm. The excitation peaks of the samples located at 429nm and 588nm respectively, corresponding to the transition of ~4A_2→~4T_2 and ~4A_2→~4T_1, the emission peaks are at 693nm, 668nm and 693nm respectively, corresponding to the R spectrum line of ~2E_g→~4A_(2g) transition of ~4A_2 level. Emission peak at 668nm is the superimposition of blue-shifted R line and T(T_1,T_2,T_3) spectrum line of ~2T_(1g)→~4A_(2g) transition. The optimum doping concentration of Cr~(3+) is 1.0wt%.
     Cr~(3+):Al_2O_3 nano-powder was firstly synthesized by low temperature combustion method. Properties of powders by different reductive agents (urea and citric acid) were studied. Pureα-Al_2O_3 prepared by using urea as the reductive agent has severe aggregation. When using citric acid as the reductive agent, precursors can burn at 500℃and can transform into pureα- Al_2O_3 when calcined at 1000℃for 1h. The adding of polyethylene glycol as the disperser can alleviate the aggregation of the sample. The emission peak of nano-powders using former two kind of fuel are at 429nm and 588nm respectively, emission peaks are at 693nm and 668nm respectively, the optimum doping concentration of Cr~(3+) is 1.0wt%.
     2. Preparation of Ti:Al_2O_3 nano-powders of ceramics
     Ti:Al_2O_3 nano-powders was synthesized by co-precipitation and sol-gel low combustion methods. For co-precipitation process, when calcined at 1200℃for lh, the particle size is less than 50nm, and morphology is spherical, and there is no intermediate phase when Ti doping is 2 wt%. For sol-gel low combustion process, pureα-Al_2O_3 phase can be obtained when calcined at 1000℃for 1h.
     3. Fabrication of Cr~(3+):Al_2O_3 transparent ceramics
     It can be concluded that the property of samples made by co-precipitation method is better than sol-gel low temperature combustion method. The effect of addictives to the properties of ceramics was studied, the optimum conditions of the amount of addictives was analyzed. The concentration of MgO is 0.1wt%, La_2O_3 is 0.15wt%, Y_2O_3 is 0.05wt%. There are great influences of sintering temperature and time on the properties of the sample. The optimum sintering parameters is 1700℃, 10~15h. The transmittance of Cr~(3+):Al_2O_3 ceramics samples sintered at 1700℃for 10h under hydrogen atmosphere is about 40%, the sample has good luminescence property at 688nm and 693nm when the doping concentration of Cr~(3+) is 1.25wt%, and this result provides the possibility of laser oscillation and high rate of doping. The functions of Cr_2O_3 in Cr~(3+):Al_2O_3 ceramic are to provide luminescent center and improve sintering of ceramics.
引文
[1] 王小坤,曾智江,朱三根等.激光陶瓷的研究进展[J].中国陶瓷工业,2006,13(2):42-46
    [2] H. Murotani, T. Mituda, M. Wakaki, et al. Optical Characteristics of Al_2O_3 Ceramics Doped with Cr at High Concentrations Prepared by Extrusion Molding Process[J]. Jpn. J. Appl. Phys., 2000,39:2748-2749
    [3] Kenyon P T, Andrews L , McCollum B C, et al Tunable infrared solid state laser materials based Cr~(3+) in low ligand field[J]. IEEE J. Quant. Elect ron., 1982, QE218 (8) :1189-1197
    [4] 臧竞存.新型晶体材料[M].北京:化学工业出版社,2006.11.100-116
    [5] 谢远亮.红宝石荧光R1线的高温高压研究:[硕士学位论文].长春:吉林大学,2004
    [6] 臧竞存.新型晶体材料[M].北京:化学工业出版社,2006
    [7] 邹雷.高功率钛宝石激光器及基于高功率钛宝石激光器的频率频率变换的研究:[硕士学位论文].天津:天津大学,2004
    [8] G N Morscher,K C chen.Creep-Resistance of Develoment Polycrystalline Yttrium Aluminum Garnt Fibers[J].Ceram Eng Sci Proc,1994,14[7-8]:181-188
    [9] 任卫.红外陶瓷[M].武汉:武汉工业大学出版社,1999:8-9
    [10] 李江,吴玉松,潘玉柏等.1.3at%Nd:YAG透明陶瓷的制备及激光性能研究[J].无机材料学报,2007,22(5):798-802
    [11] E.Carnall, S. E. Hatch, and W. F. Parsons. Optical studies on hot- pressed polycrystalline CaF_2 with clean grain boundaries[J]. Materials Science Research, 1966,3 :165- 173
    [12] J. Kong, D. Y. Tang, D. Y.Shen, et al. Diode pumped Yb:Y_2O_3 ceramic laser [J].Proc. SPIE, 4914:69-76
    [13] With G. de, Van Dijk H J A. Translucent Y_3A_(15)O-(12): ceramics[J]. Mat. Res.Bull., 1984, 19:1669-1674
    [14] M. Sekita, H. Haneda, T. Yanagitani, et al. Induced emission crosssection of Nd:Y_3A_(15)O_(12) ceramics[J]. J. Appl. Phys., 1990, 67(1):453- 458
    [15] A. Ikesue, T. Kinoshita. Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid- State Lasers[J]. J. Amer. Ceram.Soc., 1995, 78(4): 1033- 1040
    [16] T. Yanagitani, H. Yagi, M. Ichikawa. 'Production of yttrium-aluminum-garnet fine powder[J].Japan patent, 1998,10-101333
    [17] J. Lu, M. Prabhu, K. Ueda, et al. Potential of ceramic YAG lasers[J].Laser Phys.,2001, U(10):1053- 1057
    [18] K. Udea, J. Lu, H. Yagi,et al. High power ceramic lasers, 128W output and future.In: European physical Society ed[J]. ClEO Europe & EOEC Focus Meeting. Munich, Germany:[s.n.], 2001, 18-22
    [19] D.W. Trainor. Ceramic Slab Nd:YAG laser emits 5kW[J]. Laser Focus World,2005,41(10): 16-21
    [20] Y. Rabinocitch,D. Tetard, M. D. Faucher, et al. Transparent polycrystalline neodymium doped YAG: synthesis parameters, laser efficiency[J]. Optical Materials, 2003, 24:345- 351
    [21] J. Kong, J. Lu, K. Takaichi, et al. Diode- pumped Yb:Y_2O_3 ceramiclaser[J]. Appl. Phys. Lett., 2003, 82:2556-2258
    [22] J. Lu,K. Takaichi, T. Uematsu, et al. Promising ceramic laser material:Highly transparent Nd~(3+):Lu_2O_3 ceramic[J]. Appl. Phys. Lett., 2002, 23:4324- 4326
    [23] J. Saikawa, Y. Sato, T. Taira, et al.Absorption emission spectrum properties and efficient laser performances of Yb:Y_3ScAl_4O_(12)ceramics[J]. Appl. Phys. Lett., 2004, 85(11): 1898-1900
    [24] K. Takaichi, H. Yagi, J. Lu, et al. Highly efficient continuous- wave operation at 1030 and 1075 nm wavelengths of LD- pumped Yb~(3+):Y_2O_3 ceramic lasers[J]. Appl. Phys. Lett., 2004, 84(3):317- 319
    [25] J. Lu, J. F. Bisson, K. Takaichi, et al. Yb~(3+):Sc_2O_3 ceramic laser[J]. Appl.Phys. Lett., 2003, 83(6):1101- 1103
    [26] J. Lu,J. Lu,T. Murai, et al. Nd~(3+):Y_2O_3 ceramic laser[J]. Jpn. J. Appl.Phys. 2001, 40: L1277- L1279
    [27] J. Kong, J. Lu, K. Takaichi, et al. Diode- pumped Yb:Y_2O_3 ceramic laser[J]. Appl. Phys. Lett., 2003, 82: 2556-2258
    [28] J. Kong, D. Y. Tang, B. Zhao, et al. 9.2-W diode- end- pumped Yb:Y_2O_3 ceramic laser[J]. App. Phys. Lett., 2005, 86:16116- 1- 16116- 3
    [29] 楼祺洪,马海霞,孟俊清等.透明陶瓷激光器获得98.5mW连续激光输出[J].中国激光,2004,31:28-30
    [30] 楼祺洪,朱小磊,漆云凤等.掺钕陶瓷激光器获得236W高功率激光输出[J].中国激光,2005,32(6):738-741
    [31] 潘裕柏,徐军,吴玉松等.Nd:YAG透明陶瓷的制备与激光输出[J].无机材料学报,2006,21(5):1278-1280
    [32] Krachtd,Freiburgd,Wilhelmr,et al.Core-doped ceramicNd:YAG laser[J]. OpticsExpress, 2006, 14 (17):2690-2694.
    [33] 闻雷,孙旭东,王介强等.Y_2O_3超微粉及其透明陶瓷的制备[J].东北大学学报(自然科学版),2002,23(12):1151-1154
    [34] 王介强,郑少华,岳云龙等.低温法制取Y_2O_3透明陶瓷的研究[J].无机材料学报,2003,18(6):1222-1228
    [35] 楼祺洪,马海霞,漆云凤等.Yb~(3+):Y_2O_3透明陶瓷激光器获得5W连续激光输出[J].光学学报,2004,24(3):431-432
    [36] H. Murotani, T. Mituda, M. Wakaki, et al. Optical characteristics of Al_2O_3 ceramics doped with Cr at high concentrations prepared by extrusion molding process[J]. Jpn. J. Appl. Phys., 2000,39:2748- 2749
    [37] 杨秋红,曾智江,徐军等.Ti:Al_2O_3透明多晶陶瓷光谱特性分析[J].人工晶体学报,2005,34(5):856-860,
    [38] 曾智江,杨秋红,徐军.氧化铝透明陶瓷中Cr~(3+)发光性能[J].激光与光电子学进展,2005,42(7):42-44
    [39] P. F. Moulton. Spectroscopic and laser characteristics of Ti:Al_2O_3. J.Opt. Soc. Am., 1986,B3(1):125-133
    [40] F.A.维多利亚等.透明陶瓷[M].北京:轻工业出版社,1987
    [41] 李长青,张明福,左洪波等.影响透明陶瓷透光性能的因素[J].兵器材料科学与工程,2006,29(2):26-30
    [42] 苏春晖.透明陶瓷材料的研究:[博士论文].沈阳:东北大学博士论文.1996
    [43] 金志浩,高积强,乔冠军.工程陶瓷材料[M].西安:西安交通大学出版社,2000
    [44] #12
    [45] 刘军芳,傅正义,张东明等.透明陶瓷的制备技术及其透光因素的研究[J].硅酸盐通报,2003,3:68-73
    [46] 刘军芳,傅正义,张东明等.透明陶瓷的研究现状与发展展望[J].陶瓷学报,2002,23(4):249
    [47] PECHINI M P. Method of preparing lead and alkaline earth itanate and niobates and coating method using the same to form a capacitor P.USP330697[P].1967-07-11
    [48] 张希艳,田雪雁,刘全生.制备Nd~(3+):Gd_3Ga_5O_(12)透明陶瓷的纳米粉体[J].中国激光,2006,2006,33(3):376-379
    [49] 石十考,霍庆.无机粉末发光材料合成的新方法.无机盐工业,1999,31(3):20-22
    [50] M. Sekita ,H. Haneda ,T. Yanagitani et al . Induced emission cross section of Nd:Y_3Al_5O_(12) ceramics[J]. J . Appl. Phys ,1990. 67 (1) :45
    [51] T. Yanagitani ,H. Yagi ,Y. Hiro. 'Production of fine powder of yttrium aluminum garnet [J].Japan patent,1998:10-101411
    [52] LU Jianren, Song Jie, M. Prabhu, et al. High-power Nd:Y_3Al_5O_(12) ceramic laser[J]. Jpn. Appl. Phy., 2000, 39(6): 1048-1050
    [53] LU Jianren, K. Ueda, H. Yagi, et al. Neodymium doped yttrium aluminum garnet (Y_3Al_5O_(12)) nanocrystalline ceramics a new generation of solid-state laser and optical materials[J]. J Alloy Compd, 2002, 43(1):220-225
    [54] 朴贤卿,刘景和,裴广庆等.稀土掺杂YAG透明激光陶瓷的粉体制备研究[J].材料科学与工程学报2004,89(3)417-419
    [55] 朴贤卿.Nd:YAG透明陶瓷的制备:[硕士论文]长春:长春理工大学,2004
    [56] 程永亮,宋武林,谢长生.燃烧法制备氧化物纳米材料的研究进展[J].材料导报2003,17(7):70-72
    [57] Mokkelbost T , Kau I , Grande T , et al. Combustion synthesis and characterization of nanocrystalline CeO_2based powders [J] .Chem. Mater. 2004, 16 (25): 5489-5493
    [58] Mahata T, Das G, Mishra R K, et al. Combustion synthesis of gadolinia doped ceria powder[J]. J . Alloys Compd., 2005,391(1-2):129-130
    [59] Fu Y P , Lin C H , Hsu C S.Preparation of ultrafine CeO_2 powders by microwave-induced combustion and precipitation [J]. J .Alloys Compd.,2005,391 (1- 2):110-113
    [60] Aruna S T , Patil K C.Combustion synthesis and properties nanostructured of ceria-zirconia solid solutions [J].Nanostruct Mater, 1998 ,10 (6):955-960
    [61] 宿新泰,燕青芝,葛昌纯.低温燃烧合成超细陶瓷微粉的最新研究[J].化学进展,2005,17(3):430-436
    [62] Duran P,Capel F,Tartaj J,et al. Effects of low-temperature annealing on the microstructure and electrical properties of dopedZnO varistors[J]. Solid State Ionics.,2001,141/142:529-539
    [63] 吉亚明,蒋丹宇等.透明陶瓷材料现状与发展[J].无机材料学报,2004,19(2):275-282
    [1] 付高峰.超细Al_2O_3粉体、Al_2O_3陶瓷、透明陶瓷材料的制备与性能研究:[博士论文].沈阳:东北大学博士论文,2000
    [2] Ji Guang Li, Takayasu Ikegami, Jong-Heun Lee,et al.Reactive yttrium aluminate garnet powder via coprecipitation using ammonium hydrogen carbonate as the precipitant[J]. J. Mater. Res. 2000,15(9):357-362
    [3] Ji Guang Li, Takayasu Ikegami, Jong-Heun Lee, et al. Characterization of yttrium aluminate garnet precursors synthesized via precipitation using ammonium hydrogen carbonate as the precipitant[J]. J. Mater. Res., 2000,15(11):2375-2382
    [4] Li J G, Ikegami T, Lee J H, et al. Co-precipitation synthesis and sintering of yttrium aluminum garnet(YAG) powders: the effect of precipitant [J]. J. Eur. Ceram. Soc. 2000, 20: 2395-2399
    [5] J. Su, Q.L. Zhang, C.J. Gu, et al. Preparation and characterization of Y_3Al_5O_(12) (YAG) nano-powder by co-precipitation method[J].Materials Research Bulletin 2005,40 :1279-1285
    [6] Ji-Guang Li, Takayasu Ikegami, Jong-Heun Lee, et al. Well-sinterable Y_3Al_5O_(12) powder from carbonate precursor[J]. J. Mater. Res., 2000, 15(7): 1211-1218
    [7] Guogang Xu, Xudong Zhang, Wen He, et al. Preparation of highly dispersed YAG nano-sized powder by co-precipitation method[J]. Materials Letters 2006,60 :962-965
    [8] S. Ramanathan, S. K. Roy, Y. J. Bhat. Transparent YAG from powder prepared by homogeneous precipitation reaction—A1(NO_3)_3+Y(NO_3)_3+(NH_4)_2SO_4+CO(NH_2)_2[J]. Journal of materials science letters, 2001, 20: 2119-2121
    [9] Yung-Tang Nien, Yu-Lin Chen.Synthesis of nano-scaled yttrium aluminum garnet phosphor by co-precipitation method with HMDS treatment[J]. Materials Chemistry and Physics,2005,(93):79-83
    [10] I. Matsubara, M. Paranthaman, S.W. Allison. Preparation of Cr-doped Y_3Al_5O_(12) phosphors by heterogeneous precipitation methods and their luminescent properties[J]. Materials Research Bulletin, 2000, (35) :217-224
    [11] Fangli Yuan, Hojin Ryu.Ce-doped YAG phosphor powders prepared by co-precipitation and heterogeneous precipitation[J].Materials Science and Engineering, 2004,B107 :14-18
    [12] 王宏志,高濂.共沉淀法制备纳米YAG粉体[J].无机材料学报.2001,16(4):630-634
    [13] 宋琼,苏春辉,张洪波等.均相沉淀法制备Nd:YAG透明激光陶瓷材料研究[J].激光与红外.2006,36(1):44-46
    [14] 朴贤卿,卢利萍,刘景和等.尿素共沉淀法制备Yb:YAG透明激光陶瓷[J].功能材料与器件学报.2004,10(2):264-268
    [15] 李江,潘裕柏,张俊计等.共沉淀法制备钇铝石榴石纳米粉体[J].硅酸盐学报,2003,31(5):490-493
    [16] 罗电宏,马荣骏.对超细粉末团聚问题的探讨[J].湿法冶金,2002,6:57-61
    [17] R.LFeigin, D.H. Napper. Depletion stabilization and depletion flocculation[J]. J.Coll.Interf. sci.,1980,(75):525-541
    [18] J. Gregory. In solid and liquid dispersions Ed TH.F. Tadros[J]. Academic Process London, 1987:163-181
    [19] 李葵英.界面与胶体的物理化学[M].哈尔滨:哈尔滨工业大学出版社,1998
    [20] 郝顺利,王新,崔银芳等.纳米粉体制备过程中粒子的团聚及控制方法研究[J].人工晶体学报,2006,35(2):342-346
    [21] 陈宗淇,王光信,徐桂英.胶体与界面化学[M].北京:高等教育出版社,2001
    [22] 闻雷,孙旭东,王介强等.Y_2O_3超微粉及其透明陶瓷的制备[J].东北大学学报,2002,23(12):1151-1115
    [23] 闻雷,其鲁,孙旭东等.碳酸盐沉淀法制备Y_2O_3纳米粉及透明陶瓷[J].中国有色金属学报,2006,12(2):235-240
    [24] Murotani H, Mituda T,Wakaki M, et al. Optical characteristics of Al_2O_3 ceramics doped with Cr at high concentrations prepared by extrusion moldingprocess[J]. Jpn J Appl Phys,2000,39:2 748-2 749
    [26] Kisliuk P, Moore C A. Radiation from the ~4T_2 state of Cr~(3+) in ruby and emerald [J]. Phys Rev, 1967,160(2):307-312
    [25] 曾智江,杨秋红,徐军.Cr~(3+):Al_2O_3透明多晶陶瓷光谱特性分析[J].物理学报,2005,54(11):5 445-5 449
    [1] S. R. Jain, K. C. Adiga, V. R. Pai. A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures [J]. Combustion and Flame, 1981, 40: 71-79
    [2] Pechini M P. Method of preparing lead and alkaline earth titanate and niobates and coating method using the same to form a capacitor [P]. USP 330697.1967-07-11
    [3] Kingsley J J,Patil K C. A novel combustion process for the Synthesis of fine particle-aluminum and related oxide materails[J]. Mater Lett,1988,6(11/12):427-432.
    [4] 李汶霞,殷声.低温燃烧合成陶瓷微粉[J].硅酸盐学报,1999,27(1):71-76.
    [5] 张希艳,田雪雁,刘全生.制备Nd~(3+):Gd_3Ga_5O_(12)透明陶瓷的纳米粉体[J].中国激光,2006,2006,33(3):376-379
    [6] 宿新泰,燕青芝,葛昌纯.低温燃烧法合成超细陶瓷粉的最新研究[J].化学进展,2005,17(3):430-436
    [7] zhizhong Sun, Duorong Yuan, et al. Synthesis of yttrium aluminum garnet (YAG) by a new sol-gel method[J]. Journal of alloys and compounds. 2004, 379: L1-L3
    [8] Xudong Zhang, Hong Liu, Wen He, et al. Boughton. Novel synthesis of YAG by solvothermal method[J]. Journal of Crystal Growth. 2005 (275): 1913-1917
    [9] Xia Li, Hong Liu, Jiyang Wang, et al. Boughton. Production of nanosized YAG powders with spherical morphology and nonaggregation via a solvothermal method[J]. Journal of the American Ceramic Society, 2004,87 (12) : 2288-2290
    [10] Liu Y Q, Gao L. low-temperature synthesis of nanocrystalline yttrium aluminum garnet powderusing triethanolamine [J]. J. Am. Ceram. Soc,2003, 86 (10): 1651-1654
    [11] Lauren E. Shea,Joanna Mckittrick et al. Synthesis of red-mitting,small particlesize luminescent oxides using an optimized combustion process[J]. J. Am Ceram Soc ,1996, 79 (12):3257-3265
    [12] Murotani H,Mituda T,Wakaki M, et al.Optical characteristics of Al_2O_3 ceramics doped with Cr at high concentrations prepared by extrusion molding process[J].Jpn.Appl.Phys.,2000,39:2748-2749
    [13] Zeng Zhi-Jiang,Yang Qiu-Hong,Xu Jun. Spectroscopic characteristics of Cr~(3+):Al_2O_3 polycrystalline transparent alumina ceramics[J].Acta Physica Sinica,2005,54(11):5445-5449
    [14] Kisliuk P, Moore C A. Radiation from the ~4T_2 state of Cr~(3+) in ruby and emerald[J]. Phys. Rev.,1967,160(2):307-3124,5,11
    [15] A.林邦著,戴明译.分析化学中的络合作用[M].北京:高等教育出版社,1987
    [16] Jain S R, Adiga K C, Vemeker V R P. A new approach to thermochemical calculation of condensed fuel-oxidizer mixtures[J].Combustion and Flame, 1981, 40(1): 71-76
    [17] 黎大兵,胡建东,连建设等.纳米粉体(CeO_2) _(0.9-x)(GdO_(1.5))_x(Sm_2O_3)_(0.1)的溶胶-凝胶低温燃烧合成[J].硅酸盐学报,2001,29(4):340-343
    [18] 李朝辉.氧化钟基中温固体氧化物燃料电池电解质与电极材料研究:[硕士论文].长春:吉林大学,2006
    [19] 宿新泰,燕青芝,葛昌纯.低温燃烧法合成超细陶瓷粉的最新研究[J].化学进展,2005,17(3):430-436
    [1] 陈晓春,王玮,杨建红等.共沉淀-煅烧法制备MgAl_2O_4超细粉体材料[J].粉末冶金材料科学与工程,1997,4(2):310-314
    [2] 徐刚.锆钛酸铅(PZT)及钛酸铋钠(BLT)的纳米粉体和—维纳米结构的合成、表征及其机理的研究:[博士学位论文].浙江:浙江大学,2004
    [3] 刘志远,杨占红,李昆.碳酸根型镁铝复合氢氧化物的合成与表征.铜业工程,2006,4:107-112
    [4] 丁志立,陈嵩,韩杰才.柠檬酸法、氨水沉淀法和碳酸氢铵沉淀法制备的钇铝石榴石纳米粉体性能的比较.硅酸盐学报.2005,33(3):380-385
    [5] S. Ramanathan, S. K. Roy, Y. J. Bhat. Transparent YAG from powder prepared by homogeneous precipitation reaction—Al(NO_3)_3+Y(NO_3)_3+(NH_4)_2SO_4+CO(NH_2)_2[J]. Journal of materials science letters, 2001, 20: 2119-2121
    [6] Janasi S R, Emura M, Landgraf F J G, et al. The effects of synthesis variables on the magnetic properties of coprecipitated barium ferrite powders[J]. J Magn Magn Mater, 2002, 238: 168-172.
    [7] 杨蕊,沈上越,沈强等.化学共沉淀法制备Mg_(0.3)Al_(1.4)Ti_(1.3)O_5复合粉体的反应过程[J].硅酸盐学报,2005,33(6):736-740
    [8] 刘红华,王志义,于爱华等.共沉淀法制备纳米Al_2O_3/TiO_2复合粉体[J].青岛科技大学学报,2003,24(5):419-421
    [9] 徐华蕊,李凤生,陈舒林.沉淀法制备纳米级粒子的研究[J].化工进展,1996,(5):29-31
    [10] Qiu H B, Gao H C. Nanocrystalline zirconia powder processing through innovative wetchemicalmethods [J].Nanostrutured Materials, 1995, 6 (1-2): 373-376
    [11] 魏雨,李巧玲,武克忠等.纳米TiO_2的制备[J].河北师范大学学报,1998,22(2):243-246
    [12] 向芸,杨世源,牟国洪等.快速均匀沉淀法制备PZT压电陶瓷超细粉体[J].兰州理工大学学报,2005,31(3):21-24
    [13] 应皆荣,万春荣,姜长印等.聚乙二醇对无机盐的胶束增溶作用及在溶胶配制中的应用[J].功能材料,2001,32(2):118-119
    [14] Choy Jinho,Han Yangsu. Cirateroute to the piezoelectric Pb(Zr,Ti)O_3[J].J Mater Chem, 1997,7(9) :1815-1820
    [15] 徐刚,韩高荣.共沉淀法制备Bi_(3.25)La_(0.75)Ti_3O_(12)纳米粉体[J].硅酸盐学报,2004,32(12):1459-1453
    [16] 胡志强,奥谷昌之,金子正治.Pb(Zr_(0.53)Ti_(0.47))O_3陶瓷超细粉体制备及分散研究[J].中国陶瓷工业,2004,11(6):20-23
    [17] 许珂敬,杨新春,刘风春.高分子表面活性剂对氧化物陶瓷微颗粒的分散作用[J].中国陶瓷,1999,10:15-16
    [18] 檀柏杉,韩恩山,李鹏.LiNi_(1/3)Co_(1/4)Mn_(1/3)M_(1/12)(M=Al,Ti)的性能研究[J].电池,2005,35(4):259-260
    [19] 徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社,2003
    [20] 徐业彬,曹炜,袁孝等.La(Mg_(1/2)Ti_(1/2))_3粉末的EDTA凝胶燃烧法合成研究[J].功能材料,2004,35:1464-1470
    [1] 曲远方主编.功能陶瓷材料[M].北京:化学工业出版社,2003
    [2] Oda,Isao,Maekawa,et al.Method of producing polycrystalline translucent alumina having an excellent in line transmission[P].U.S.Pat.No.4222978,Sept.16,1980
    [3] Kaneno,Masayuki,Oda,et al.Transparent polycrystalline translucent alumina and high pressure vapor discharge lamp[P]U.S.Pat.No.4282972 Jan.8,1980
    [4] 李世普.特种陶瓷工艺学[M].武汉:武汉理工大学出版社,1990
    [5] 高陇桥,李发.Al_2O_3透明陶瓷及其快速烧结[J].真空电子技术,1987,1:44-49
    [6] 杨秋红,曾智江,徐军等.La_2O_3对氧化铝透明陶瓷显微结构和透光性能的影响[J].中国稀土学报,2005,23(6):713-716
    [7] 杨秋红,徐军,宋平新等.Al_2O_3透明陶瓷显微结构的研究[J].功能材料与器件,2004,10(3):22-25
    [8] Rossi G, Buke J E. Influence of additives on the microstructure of sintered Al_2O_3 [J]. J Amer Ceram Soc, 1973, 56(12): 654-659.
    [9] 饶东升.硅酸盐物理化学[M].北京:冶金工业出版社,1988;231
    [10] 曾照强,胡晓清,林旭平等.添加Cr_2O_3对Al_2O_3-TiC陶瓷烧结及纳米结构形成的影响[J].硅酸盐学报,1998,26(2):178-181
    [11] 黄良钊,张巨先.铬刚玉陶瓷的制备及性能研究[J].中国陶瓷,1998,34(2):15-17
    [12] Γ.A.维多利克著,陈婉华译.透明陶瓷[M].北京:轻工业出版社,1987
    [13] Cronemeyer D C.Optical absorptiona Characteristics of pink ruby[J].J.opt.Soc.Am., 1956,56(12): 1703-1707
    [14] Nelson D F and Sturge M D.Relation brtween absorption and emission in the region of the rline of ruby[J].Phy. Rev., 1965,137(4A):A1117-A1123
    [15] Murotani H,Mituda T,Wakaki M, et al.Optical characteristics of Al_2O_3 ceramics doped with Cr at high concentrations prepared by extrusion molding process[J].Jpn.Appl.Phys.,2000,39:2748-2749
    [16] Zeng Zhi-Jiang,Yang Qiu-Hong,Xu Jun. Spectroscopic characteristics of Cr~(3+):Al_2O_3 polycrystalline transparent alumina ceramics[J].ActaPhysica Sinica,2005,54(11):5445-5449
    [17] Kisliuk P, Moore C A. Radiation from the ~4T_2 state of Cr~(3+) in ruby and emerald[J]. Phys. Rev., 1967 ,160(2):307-3124,5,1
    [18] 丁格尔波夫等 主编,施今 译.金属陶瓷[M].上海:上海科技出版社,1964
    [19] Greskovich C and Chernoch J P.Improved polycrystalline ceramic lasers[J].J.APPl.phys., 1974,45(10):4495-4502
    [20] 刘建华.掺钛蓝宝石(Ti:Al_2O_3)晶体光谱学和电子自旋共振谱学[D].上海:中国科学院上海光学精密机械研究所,1992