1. [地质云]滑坡
缺铁性贫血患者血液介电频谱特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的通过交流电阻抗方法比较正常人与贫血患者血液的介电频谱特性差异,构建血液介电频谱的数学模型分析方法以及贫血患者的模型参数,进而建立贫血患者血液的快速、准确的新检测方法。明确贫血疾病对血液及血细胞电生理特性的影响。
     方法采集正常人与贫血患者的血液,使用Agilent 4294A阻抗分析仪,在10~4~10~8 Hz较宽的频率范围内,分别测量正常人与贫血患者血液随着电场频率变化的电容C与电导G的改变情况,通过测量池系数C_0,将实测C与G转变为介电常数ε和电导率κ,得到ε和κ随电场频率变化的介电常数-电导率频率关系图谱。利用介电损耗因子频谱、电导率虚部频谱、Cole-Cole图以及损耗角正切频谱等提取正常人血液和贫血患者血液的频谱特征参数,比较正常人与贫血患者血液细胞电生理数据特征的差别,通过统计学的显著性检验分析,明确正常与贫血的血液频谱特征参数区别。之后,进行血液细胞介电频谱的数学模型解析。利用Cole-Cole数学模型建立血液细胞的数学模型的曲线拟合方法,以及对曲线的拟合误差进行评估。最后探讨贫血产生的电生理学机制。
     结果
     (1)正常人血液介电常数随着外加电场频率的增加而减少;电导率随着电场频率的增加斜率有明显的改变,上升速度不断加快;两者在10~5Hz附近和10~7~10~8Hz都经历了一个平台期。正常人血液的第一特征频率f_(C1)=0.73 MHz,第二特征频率f_(C2)= 2.08 MHz;损耗角正切最大值Δtgδ_(max)=2.76。
     (2)贫血患者血液也产生细胞介电弛豫现象,介电常数与电导率也表现两个平台期;贫血患者血液的第一特征频率f_(C1)=0.65MHz,第二特征频率f_(C2)= 2.08MHz,损耗角正切最大值Δtgδ_(max)=2.41。
     (3)在介电常数ε谱线:频率为3×10~4~2×10~6Hz范围,贫血组较正常组ε谱线下移,导致εL减小7.69%(P<0.05),Δε减小7.78%(P<0.05)。在2×10~6~10~8Hz高频段,贫血组与正常组的ε_h基本不变,说明贫血患者血液绝缘性降低;在电导率κ谱线:贫血组κ曲线全面上移,导致κ_L和κ_h分别增加24.38 %和6.59 %,说明贫血患者血浆和细胞内液的导电能力增加;贫血组介电损耗因子ε"谱线降低,峰值ε"_(max)与正常组比较降低14.81%,第一特征频率f_(C1)减小10.96 %,说明贫血患者血液介电损耗和频率特性降低。
     (4)正常人和贫血患者血液的介电频谱行为可以通过Cole-Cole的两项式数学模型进行表征,进而可以确定Cole-Cole参数作为两者的仿真模拟参数,且曲线拟合残差总和分别为4.10%和4.67%。
     结论
     (1)贫血患者血液的介电性降低,表现在ε_L、Δε、ε"和Δtgδ_(max)减小;
     (2)贫血患者血液的导电性增加,表现在κ_L、κ_h、Δκ和κ"增加;
     (3)贫血患者血液的频率特性降低,表现在f_(C1)减小;
     (4)贫血患者血液的介电频谱特征参数和Cole-Cole数学模型参数的建立,为临床研究贫血疾病的电学特性,以及在贫血的快速确诊的方面,提供了新的研究手段和评价指标,具有潜在的临床应用前景。
Objective Establishing analysis methods and parameters of a mathematical model, with Cole-Cole equations, comparing the disparity between normal and anemia blood by impedance measurement in dielectric spectrum. We have found a new technique which can detect the blood of anemia patients in rapid and accuracy way. Make sure that the effects on anemia of electrophysiology properties in blood and cells.
     Methods To collect the blood from normal and anemia patients, measuring the blood by impedance analyzer which type is Agilent 4294A, getting the parameters, then concerting the capacitance C and conductance G to permittivityεand conductivityκ, analyzing the experiment data which have converted. Extracting the characteristic parameters, after having compared with the differences between normal and anemia group . With the significance testing to differentiate the characteristic parameters between normal and anemia group. Then the parameters of Cole-Cole mathematical, which were established by the fitting residual analysis of parameters in theoretical and experiment. Finally, discussing the electrophysiology mechanisms of anemia.
     Result
     (1) In normal human blood dielectric constant drops accompanied by the increases of frequency, while a significant change happens in the slope of conductivity, which leads an accelerate increasing; when the frequency approaching 10~5Hz and 10~7~108Hz, there are two plateaus. The first characteristic frequency of normal human blood f_(C1)=0.73MHz, and the second characteristic frequency f_(C2)= 2.08MHz; Max of loss tangentΔtgδ_(max)=2.76.
     (2) In anemia blood patient we can observe the cell dielectric dispersion too , as the normal group there are also two plateaus in both dielectric constant and conductivity spectrum; the first characteristics frequency of anemia blood is 0.65MHz, the second characteristics reaches to 2.08MHz, and the _(max) of loss tangentΔtgδ_(max)=2.41.
     (3) Between frequency range 3×10~4Hz and 2×10~6Hz, in the curves ofε, the values of anemia group is lower than that of the normal ones, reduced by 7.69% (p<0.05) inεL, and 7.78% (p<0.05) decrease of ?ε. In the high frequency range from 2×10~6 to 10~8Hz,ε_h in both normal and anemia groups are almost the same, which predicated the isolation of anemia blood got down. Meanwhile the conductivity (κ) curves: the curve of anemia samples is entirely upper than the normal ones, which leads to the increase ofκ_L andκ_h by 24.38% and 6.59%. Respectively, these show the enhancement of conductive capacity in anemia blood’s plasma and intracellular fluid; the curve dielectric loss factor (ε") of anemia falls and peak of dielectric loss factor (ε"_(max)) drops by 14.81% compared with normal samples, the first characteristic frequency decreased by 10.96% which means that the dielectric loss and frequency properties fell.
     (4) The characteristic dielectric response of anemia and normal blood of the Cole-Cole mathematical model, and the fitting curve residual are 4.10% and 4.67% respectively.
     Conclusion
     (1) The ability of dielectric decreases is demonstrated by the reduce ofε_L、Δε、ε" andΔtgδ_(max).
     (2) The increase of capacity in conductivity is expressed by the addition ofκ_L、κ_h、Δκandκ".
     (3) The falls of frequency properties displayed in the drop of f_(C1).
     (4) The established of Cole-Cole mathematical model provides a new technique and evaluation index on anemia electrical characteristic research, which can probably provide a useful, rapid and accuracy way for clinical diagnosis of anemia in the future.
引文
[1]陈雅.浅谈贫血分类与ICD-10编码[J].现代医院,2005,5(5):112-113.
    [2]赵正言.浙江省儿童健康状况分析[J].浙江预防医学,1998,10(5):288-290.
    [3]王立新,何青芳,陈雅萍,等.浙江省3~12岁儿童贫血状况[J].中国学校卫生,2007,28(4) :350-351.
    [4]况红华.儿童缺铁性贫血回顾性分析[J].中国实用医药,2009,4(1):98-99.
    [5]罗南英.2420例学前儿童贫血状况调查[J].中国实用医药,2009,4(1):232-233.
    [6]王欢.小儿缺铁性贫血的预防与治疗[J].中国实用乡村医生杂志,2008,6(15):10-11.
    [7]朱丹,李军石,云爱玲.小儿营养性缺铁性贫血病因分析与预防[J].中国现代医学杂志,2003,13(18):80-81.
    [8]周巧云.缺铁性贫血红细胞体积和分布宽度的变化及意义[J].中国现代医学杂志,2003,13(18):122-123.
    [9] RABINI R.A.,MAURO POLENTAROBERTO STAFFOLANI,et al.Effect of Hydroxymethylglutaryl-CoA Reductase Inhibitors on the Functional Properties of Erythrocyte Membranes[J].Experimental and Molecular Pathology,1993,59(1):51-57.
    [10]刘国强.医学电磁成像[M].北京:科学出版社,2006.
    [11] SCHWAN H.P..Advances in biological and medical physics[M].New York :Academic Press,1957.
    [12] FOSTER K.R.,SCHWAN H.P..Dielectric properties of tissues and biological materials:a critical review[J].Critical Reviews In Biomedical Engineering,1989,17(1):25-104.
    [13] PAULY H.,SCHWAN H.P..Dielectric properties and ion mobility in erythrocytes[J].Biophysical Journal,1966,6(5):621-39.
    [14] HAYASHI Y,OSHIGE I,KATSUMOTO Y,et al.Dielectric inspection of erythrocyte morphology[J].Physics In Medicine & Biology,2008,53(10):2553-2564.
    [15] DISSADO L.A.. A fractal interpretation of the dielectric response of animal tissues[J].Physics In Medicine & Biology,1990,35(11):1487-1503.
    [16] ACKMANN J.J.,Seitz MA,Dawson CA,et al.Specific impedance of canine blood[J].Annual Review Of Biomedical Engineering,1996,24(1):58-66.
    [17] ASAMI K.,Yamaguchi T.Electrical and morphological changes of human erythrocytes under high hydrostatic pressure followed by dielectric spectroscopy[J].Annual Review Of Biomedical Engineering,1999,27(4):427-435.
    [18] JASPARD F.,NADI M..Dielectric properties of blood an investigation of temperature dependence[J].Physiological Measurement,2002,23(3):547-554.
    [19] JASPARD F,Nadi M,Rouane A.Dielectric properties of blood:an investigation of haematocrit dependence[J].Physiological Measurement,2003,24(1):137-147.
    [20] SCHWAN H.P.. Analysis of dielectric data: Experience gained with biological materials[J]. Transactions on Electrical Insulation,1985,20:913-922.
    [21]于冬雁,崔湘屏,马青.人血液细胞介电谱的实验研究[J].生物医学工程学杂志,2006,23(6):1198-1201.
    [22]马青,渡边牧夫,洲崎敏伸.应用Cole-Cole公式分析蛙血细胞介电谱[J].中国生物医学工程学报,2003,22(4):309-312.
    [23]马青,汤治元,赵伟红,等.蛙血细胞被动电生理特性的数据分析[J].中国医学物理学杂志,2001,18(4):231-233.
    [24] SCHWAN H.P..Determination of biological impedances [A]. In: Physical Techniques in Biological Research. Part B[M].New York : Academic Press, 1963.
    [25]赵孔双.介电谱方法及应用[M].北京:化学工业出版社.2008.
    [26] SCHWAN H.P., T.P.BOTHWELL, F.J.WIERCINSKI.Electrical properties of beef erythrocyte suspensions at low frequencies[J].Federation of American Societies for Experimental Biology,1954,13:15-16.
    [27]陶祝良,陈吉槺,刘晓鹏.铁缺乏及运动对大鼠红细胞膜圆二色谱膜表面电荷及膜流动性的影响[J].中国应用生理学杂志,1995,11(3):213-215.
    [28]李津婴,赵法极,郭俊生,等.缺铁性贫血红细胞形态学变化及膜带3蛋白分布状态改变的实验研究[J].中华血液学杂志,1997,18(6):320-321.
    [29] SCHWAN H.P., BOTHWELL T.P..Electrical properties of the plasma membrane of erythrocytes at low frequencies [J]. Nature,1956,178:265–266.
    [1] H?BER R EINE METHODE.Die elektrische leitf?ihigkeit im innern von zellen zu messen[J].Arch. Ges. Physiol.,1910,133:237-259.
    [2] H?BER R EIN ZWEITES VERFAHREN.Die leitf?higkeit im innern yon zellen zu messen[J].Arch. Ges. Physiol.,1912,148:189-221.
    [3] COLE KS MEMBRANES.Ions and impulses[M]. Berkeley:University of California Press, 1972.
    [4] FRICKE H,CURTIS H.J.. Specific resistance of the interior of the red blood corpuscle[J]. Nature,1934,133:651
    [5] FRICKE H.Curtis HJ Electric impedance of suspensions of leucocytes[J].Nature, 1935,135:436
    [6] RAJEWSKY B, SCHWAN H.P..Die dielektrizit~itskonstante und leitf~ihigkeit des blutes bei ultrahohen frequenzen[J].Naturwissenschaften,1948,35:315.
    [7] SCHWAN H.P..Electrical properties of blood at ultrahigh frequencies[J].American Journal of Physical Medicine & Rehabilitation,1953,32(3):144-152.
    [8] MAXWELL J.C..A treatise on electricity and magnetism[M].New York: Dover Publications,1954.
    [9] FRICKE H.A mathematical treatment of the electric conductivity and capacity of disperse systems: I. The electric conductivity of a suspension of homogeneous spheroids[J].Physical Review,1924,24:575-87.
    [10] COLE K.S..Electric impedance of suspensions of Arbacia eggs [J].General Physiology,1928,12(1):37-54.
    [11] W.M. ARNOLDA , U. ZIMMERMANNA.Electro-rotation:development of a technique for dielectric measurements on individual cells and particles[J].Journal of Electrostatics,1988,21:151-191.
    [12] R. GEORGIEVA, B. NEU, et al.Low frequency electrorotation of fixed red blood cells[J].Biophysical Journal,1998,74(4):2114-2120.
    [13] MARCEL EGGERA, EDWIN DONATH, et al.Human platelet electrorotation change induced by activation: inducer specificity and correlation to serotonin release[J].Bioenergetics,1988,972(3):265-276.
    [14] JUN YANG, YING HUANG, et al.Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion[J].Biophysical Journal,1999,76(6):3307-3314.
    [15] J. GIMSA, P. MARSZALEK, U. LOEWE, et al. Dielectrophoresis and electrorotation of neurospora slime and murine myeloma cells. Biophysical Journal,1991,60(4):749-760.
    [16] W.MICHAEL ARNOLD, RITA K. SCHMUTZLER, ANDREAS G. ,et al.Electro-rotation of mouse oocytes: single-cell measurements of zona-intact and zona-free cells and of the isolated zona pellucida[J].Biomembranes,1987,905(2):454-464.
    [17] R. H?LZEL.Electrorotation of single yeast cells at frequencies between 100 Hz and 1.6 GHz[J]. Biophysical Journal,1997,73(2): 1103-1109.
    [18] LONG QUAN,XING WAN-LI.Ddetection of the apoptosis of Jurkat cell using an electrorotation chip[J].Acta Biophysica Sinica(生物物理学报),2005,21(1):65-70.
    [19] MIGUEL SANCHO, GENOVEVA MARTíNEZ, SAGRARIO MU?OZ,et al.Interaction between cells in dielectrophoresis and electrorotation experiments[J].Biomicrofluidics,2010,4(2): 022802.
    [20] DAVID W. INGLIS, R. RIEHN, R. H. AUSTIN, et al.Continuous micro?uidic immunomagnetic cell separation[J]. Applied Physics Letters,2004,85(21):5093-5095.
    [21] R. HUANG, T.A.BARBER, M.A.SCHMIDT, et al.A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women[J].Prenatal Diagnosis,2008,28: 892-899.
    [22] SHULIN ZHAOA, YONG HUANGA, FANGGUI YEA, et al.Determination of intracellular sulphydryl compounds by microchip electrophoresis with selective chemiluminescence detection[J].Journal of Chromatography A,2010,1217:5732–5736.
    [23] POHL H. A..Some effects of nonuniform fields on dielectrics[J].Journal of Applied Physics,1958,29:1182-1188.
    [24] YU XIAOBO, WANG LING, XIAOTANG, et al.The erythrocyte electrophoresises of rabbits with hypercholesterolemia in an ac and a dc electric fields[J].Progress in Biochemistry and Biophysics(生物化学与生物物理进展),1992,19(1):50-52.
    [25] ZHAN LIANG , ZHONG LI-SHENG.Application of dielectrophoresis in biochipmanipulated by electromagnetic field[J].Insulating Materials(绝缘材料),2004,2:52-55.
    [26]王妍,徐春祥,曹岷,等.红细胞在生物芯片上的电介质电泳[C],21世纪医学工程学术研讨会论文摘要汇编,2001.
    [27] SOUMYA K. SRIVASTAVA1, PRASHANT R. DAGGOLU1, SHANE C. BURGESS,et al.Dielectrophoretic characterization of erythrocytes: Positive ABO bloodtypes[J].Electrophoresis,2008,29(24):5033-5046.
    [28] MUHITHABDUL,SAGARD.KARUNA,AHMADADEEL.Excesspermittivity of leukemic human erythrocytesExcess permittivity of leukemic humanerythrocytes[J].Bioinfolet,2011,8(1):328-331.
    [29] ZHAO KONGSHUANG.Present Situation and Prospects of Dielectric Study onHeterogeneous Systems[J],Progress in Chemistry(化学进展),1997,19 (4):361-369.
    [30] ANA VALERO, THOMAS BRASCHLER, PHILIPPE RENAUD, et al.A unifiedapproach to dielectric single cell analysis: Impedance and dielectrophoretic forcespectroscopy[J].Lab on a Chip,2010, 10:2216-2225.
    [31] TYNA A HOPE, SI?N E ILES.Technology review: The use of electrical impedancescanning in the detection of breast cancer[J].Breast Cancer Research,2004,6(2):69-74.
    [32] A LEXANDER STOJADINOVIC, AVIRAM NISSAN, CRAIG D. SHRIVER, etal.Electrical impedance scanning as a new breast cancer risk stratification tool for youngwomen[J].Journal of Surgical Oncology,2008,97(2):112-120.
    [33]王侃,董秀珍,付峰等.基于电阻抗扫描的乳腺组织阻抗频谱特性测量实验[J].生物物理学报,2008,24(6):474-479.
    [34] HANS-JOACHIM MENTZEL, ANSGAR MALICH, KARIM KENTOUCHE, etal.Electrical impedance scanning-application of this new technique for lymph nodeevaluation in children[J].Pediatr Radiol,2003,33(7):461-466.
    [35] V. TROKHANOVA, Y. A. CHIJOVA, M. B. OKHAPKIN, et al.Using of electricalimpedance tomography for diagnostics of the cervix uteri diseases[C].Journal of Physics:Conference Series 224,2010:012068.
    [36] CLOTILDE RIBAUT, KARINE REYBIERA, OLIVIER REYNESC,et al.Electrochemical impedance spectroscopy to study physiological changes affecting the red blood cell after invasion by malaria parasites[J].Biosensors and Bioelectronics,2009,24(8):2721-2725.
    [37] H. E. AYLIFFE, A. B. FRAZIER, R. D. RABBITT.Electric impedance spectroscopy using microchannels with integrated metal electrodes[J].Journal of Microelectromechanical Systems,1999,8(1):50-57.