1. [地质云]滑坡
核/壳结构ZnO量子点的结构与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米技术是近年来随着纳米材料的合成工艺、表征技术以及微纳加工技术发展起来一门新兴的学科。当材料的尺寸进入纳米级别时,由于量子限制效应和表面效应的作用,会表现出很多新奇的物理和化学性质,在半导体器件、磁性材料、催化、光化学电池、纳米器件等领域有着重要的应用价值。为了实现纳米颗粒在实际应用中的良好性能,往往须要对纳米颗粒的某些性质进行调控,而构建核/壳结构量子点则是最近得到广泛研究的一种操纵、调控和剪裁纳米颗粒性质的有效手段。已经有广泛的研究证实,量子点的光电磁性质可以通过构成核/壳结构颗粒来连续调节。本论文采用了一种表面转化策略合成ZnO/ZnS核/壳结构量子点,并探索了其在稀磁半导体磁性操控、高性能光化学电极和纳米发电机方面的应用。结合X射线吸收谱、紫外可见吸收光谱、光致发光谱等表征手段和第一性原理密度泛函计算方法解释了核/壳结构量子点在这些应用中具有良好性能的原因,并指出了进一步进行优化的途径。
     本论文主要包括以下内容
     (1)利用核壳结构调控Co掺杂ZnO稀磁半导体量子点的自旋交换作用操纵稀磁半导体量子点(diluted magnetic semiconductor quantum dots, DMS QDs)中的铁磁相互作用是研发下一代自旋信息技术的关键课题。然而,由于DMS QDs中磁性离子固有的反铁磁耦合作用,这一目标的实现面临巨大的挑战。我们通过利用核壳结构改变Co掺杂ZnO中磁性离子的3d轨道相对于带边的位置,成功的实现了DMSQDs的铁磁交换作用。第一性原理计算显示,包裹在Co掺杂ZnO核外围的ZnS壳层可以有效的诱导界面以下1.2nm内的Co2+对从反铁磁耦合转变为铁磁耦合。这一方法可以为未来的自旋电子学应用中关于操纵氧化物纳米结构中交换作用的研究提供参考。
     (2)高性能ZnO@ZnO:S类核/壳纳米复合材料光解水光电极
     抑制光电极表面的快速空穴复合是设计和制备用于高性能光解水光电极的最核心问题之一。本章中,我们提出了通过在ZnO纳米颗粒表面层掺入S原子,产生俘获空穴的能级,以之来抑制光生电子-空穴复合,提高载流子利用效率,从而提高能量转化率。我们制备的ZnO@S掺杂ZnO类核/壳纳米复合材料在功率密度为100mW/cm2的模拟光源照射下,测得产生的光电流密度高达1.08mA/cm2,比纯ZnO纳米颗粒电极高8倍左右。实验表征和理论计算结果表明,由于S原子占据了纳米颗粒表面ZnO晶格中O原子的位置,在带隙间产生一个可以俘获光生空穴的杂质能级。杂质能级的产生导致了光解水性能的增强。这一设计为未来进一步优化ZnO光电极提供了参考。
     (3)通过ZnO/ZnS核/壳结构稳定纳米颗粒中的注入电子及其在纳米发电机中的应用
     在自我供能纳米技术领域,研发高效、稳定、柔性的基于ZnO纳米材料的纳米发电机具有重要的意义。本文中,我们提出一种新型的基于ZnO纳米驻极体的静电纳米发电机;通过形成具有Ⅱ型结构核/壳结构纳米颗粒,注入ZnO纳米驻极体的电荷可以被长久的保存,利用带有稳定电荷的驻极体构成电容器,环境中声波等微弱振动引发电容器中的导体对极板的共振可以在外电路中产生交流电流。为了实现这个设想,我们通过表面转化策略制备了ZnO/ZnS核/壳结构纳米颗粒,进行紫外照射向核/壳结构纳米颗粒注入电子,由于ZnS壳层的保护,注入电子可以在空气中稳定存在,因此注入电子可以长期存在于核/壳结构纳米颗粒中。随后,我们使用已经充入电荷的核/壳结构驻极体组装成一台静电纳米发电机,它可以以2.2%的能量转化率将来自环境中的声波转化为电能。实验和理论研究表明,注入核/壳结构驻极体的电子存在于ZnO晶格中的氧空位缺陷中。这项研究为制备具有良好性能和应用价值的新型ZnO基纳米发电机的发展提供了另一条可能的途径。
As the development of synthesis and characterization of nanostructures and micro/nano processing, nanotechnology has been attracted immense interests. When their sizes are in the range from1nm to100nm, materials exhibits many chemical and physical properties due to the quantum confinement effect and surface effect, which have potential application for semiconductor devices, magnetic materials, catalysis, photoelectrochemical electrodes and nanodevices. To realize practical applications, it is necessary to precisely tuning certain properties of nanoparticles and core/shell structuring is an effective way to achieve it. Extensive studies have proved that the electronic structure of nanoparticles can be continuously tuned via core/shell structure. In this thesis, we reported a surface-converting strategy for synthesize ZnO/ZnS core/shell nanoparticles and explore their application in diluted magnetic semiconductors, highly efficiency photoelectrochemical electrodes and nanogenerators. We exploited characterization techniques such as X-ray absorption spectroscopy, UV-vis absorption spectroscopy, photoluminescence spectroscopy and first-principles calculations to explain the mechanism and discover the path to further optimization.
     The main content in this dissertation is as follows:
     (1) Realizing ferromagnetic coupling in diluted magnetic semiconductor quantum dots
     Manipulating the ferromagnetic interactions in diluted magnetic semiconductor quantum dots (DMSQDs) is a central theme to the development of the next-generation spin-based information technologies, but remains a great challenge because of the intrinsic antiferromagnetic coupling between impurity ions therein. Here, we propose an effective approach capable of activating ferromagnetic exchange in ZnO-based DMSQDs, by virtue of a core/shell structure that engineers the energy level of the magnetic impurity3d levels relative to the band edge. This idea has been successfully applied to Zn0.96CO0.04O DMSQDs covered by a shell of ZnS or Ag2S. First-principles calculations further indicate that covering a ZnS shell around the Co-doped ZnO core drives a transition of antiferromagnetic-to-ferromagnetic interaction, which occurs within an effective depth of1.2nm underneath the surface in the core. This design opens up new possibility for effective manipulation of exchange interactions in doped oxide nanostructures for future spintronics applications.
     (2) ZnO@S-doped ZnO Core/Shell Nanocomposites for Highly Efficient Solar Water Splitting
     Prohibiting the rapid holes recombination is a key issue for designing highly efficient photoelectrodes for solar water splitting. Here, we propose a strategy incorporating S atoms in the surface shell of ZnO nanoparticles to generate holes trapper for restraining the electron-hole recombination. The obtained ZnO@S-doped ZnO core/shell-like nanocomposite exhibits a high photocurrent density of1.08mA/cm2with conversion efficiency up to0.74%,8times larger than that of pristine ZnO nanoparticles. Comprehensively, the results from experimental and computational aspects reveal that the S dopants substituting the surface O sites narrow the band gap and introduce a mid-gap impurity band, contributing to the enhanced water splitting activity. This design provides some guides for future optimization of ZnO-based photoelectrodes.
     (3) A Novel Nanogenerator based on ZnO/ZnS core/shell electrets with Stabilized Quasi-permanent Charge
     Flexible, efficient and robust ZnO-based nanogenerators with convenient integration process are particularly desirable for self-powered technology, which is however difficult to achieve simultaneously in traditional piezoelectric ZnO nanogenerators due to the complexity of the function unit for generating piezopotential. Here, we proposed a novel flexible electrostatic ZnO nanogenerator based on charged ZnO nanoscale electrets, in which extra charge is stabilized with a carefully devised type-Ⅱcore/shell structure. Via a previously reported surface-converting strategy, we successfully covered ZnS shells around ZnO nanoparticles, preventing UV-induced electron carriers form decay in the atmosphere; and then the charged electrets were assembled with a simple process into a nanogenerator, which is enabled to convert vibrational energy from the environment into electric power with a conversion efficiency of2.2%. Photoluminescence, X-ray absorption spectroscopy and first-principles studies revealed that in the charged ZnO/ZnS core/shell electrets, the injected electrons occupy the site of oxygen vacancies. This design opens up an alternative path for fabricating flexible ZnO-based nanogenerator for future nanotechnology application.
引文
Bussian, D. A., S. A. Crooker, et al. (2009). "Tunable magnetic exchange interactions in manganese-doped inverted core-shell ZnSe-CdSe nanocrystals." Nature Materials 8(1): 35-40.
    Carnes, C. L. and K. J. Klabunde (2002). "Unique chemical reactivities of nanocrystalline metal oxides toward hydrogen sulfide." Chemistry of Materials 14(4):1806-1811.
    Carpenter, E. E., C. Sangregorio, et al. (1999). "Effects of shell thickness on blocking temperature of nanocomposites of metal particles with gold shells." Magnetics, IEEE Transactions on 35(5):3496-3498.
    Chen, D. A., F. Zhao, et al. (2010). "Bright and stable purple/blue emitting CdS/ZnS Core/Shell nanocrystals grown by thermal cycling using a single-source precursor." Chemistry of Materials 22(4):1437-1444.
    Graf, C., W. Schartl, et al. (1999). "Dye-labeled poly(organosiloxane) microgels with core-shell architecture." Langmuir 15(19):6170-6180.
    He, Q., Z. Zhang, et al. (2008). "A novel biomaterial-Fe3O4:TiO2 core-shell nano particle with magnetic performance and high visible light photocatalytic activity." Optical Materials 31(2): 380-384.
    Hota, G., S. B. Idage, et al. (2007). "Characterization of nano-sized CdS-Ag2S core-shell nanoparticles using XPS technique." Colloids and Surfaces A:Physicochemical and Engineering Aspects 293(1-3):5-12.
    Hota, G., S. Jain, et al. (2004). "Synthesis of CdS-Ag2S core-shell/composite nanoparticles using AOT/n-heptane/water microemulsions." Colloids and Surfaces A:Physicochemical and Engineering Aspects 232(2-3):119-127.
    Nan, W. N., Y. A. Niu, et al. (2012). "Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals:synthesis and structure-dependent optical properties." Journal of the American Chemical Society 134(48):19685-19693.
    Norberg, N. S., K. R. Kittilstved, et al. (2004). "Synthesis of colloidal Mn2+:ZnO quantum dots and high-Tc ferromagnetic nanocrystalline thin films." Journal of the American Chemical Society 126(30):9387-9398.
    Schwartz, D. A., N. S. Norberg, et al. (2003). "Magnetic quantum dots:Synthesis, spectroscopy, and magnetism of Co2+-and Ni2+-doped ZnO nanocrystals." Journal of the American Chemical Society 125(43):13205-13218.
    Smith, A. M., A. M. Mohs, et al. (2009). "Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain." Nature Nanotechnology 4(1):56-63.
    Son, D. I., B. W. Kwon, et al. (2012). "Emissive ZnO-graphene quantum dots for white-light-emitting diodes." Nature Nanotechnology 7(7):465-471.
    Wang, X., J. Zhuang, et al. (2005). "A general strategy for nanocrystal synthesis." Nature 437(7055):121-124.
    Whitaker, K. M., M. Raskin, et al. (2011). "Spin-on Spintronics:Ultrafast Electron Spin Dynamics in ZnO and Zn1-xCoxO Sol-Gel Films." Nano Letters 11(8):3355-3360.
    Zhang, S. and X. Li (2004). "Synthesis and characterization of CaCO3@SiO2 core-shell nanoparticles." Powder Technology 141(1-2):75-79.
    马礼敦,杨福家(2001).同步辐射概论.上海,复旦大学出版社.
    王其武,刘文汉(1994).X射线吸收精细结构及其应用.北京,科学出版社.
    韦世强,孙治湖,等(2007). "XAFS在凝聚态物质研究中的应用.”中国科技大学学报37(4-5):426440.
    Ankudinov, A. L., B. Ravel, et al. (1998). "Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure." Physical Review B 58(12): 7565-7576.
    Yao, T., Z. H. Sun, et al. (2010). "Insights into initial kinetic nucleation of gold nanocrystals." journal of the american chemical society 132(22):7696-7701.
    马礼敦,杨福家(2001).同步辐射概论.上海,复旦大学出版社.
    王其武,刘文汉(1994).X射线吸收精细结构及其应用.北京,科学出版社.
    韦世强,孙治湖,等(2007). "XAFS在凝聚态物质研究中的应用.”中国科技大学学报37(4-5):426-440.
    钟文杰,贺博,et al. (2001). "USTCXAFS 2.0软件包.”中国科技大学学报31(3):328-333.
    Ankudinov, A. L., B. Ravel, et al. (1998). "Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure." Physical Review B 58(12): 7565-7576.
    Beaulac, R., L. Schneider, et al. (2009). "Light-induced spontaneous magnetization in doped colloidal quantum dots." Science 325(5943):973-976.
    Bohle, D. S. and C. J. Spina (2009). "Cationic and anionic surface binding sites on nanocrystalline zinc oxide:surface influence on photoluminescence and photocatalysis." Journal of the American Chemical Society 131(12):4397-4404.
    Bussian, D. A., S. A. Crooker, et al. (2009). "Tunable magnetic exchange interactions in manganese-doped inverted core-shell ZnSe-CdSe nanocrystals." Nature Materials 8(1): 35-40.
    Chang, K., K. S. Chan, et al. (2005). "Spin-polarized tunneling through a diluted magnetic semiconductor quantum dot." Physical Review B 71(15):155309.
    Chen, G, C. Song, et al. (2012). "Resistive switching and magnetic modulation in cobalt-doped ZnO." Advanced Materials 24(26):3515-3520.
    Chen, O., D. E. Shelby, et al. (2010). "Excitation-intensity-dependent color-tunable dual emissions from manganese-doped CdS/ZnS core/shell nanocrystals." Angewandte Chemie International Edition 49(52):10132-10135.
    Dalpian, G. M. and J. R. Chelikowsky (2006). "Self-purification in semiconductor nanocrystals." Physical Review Letters 96(22):226802.
    Dev, P., Y. Xue, et al. (2008). "Defect-induced intrinsic magnetism in wide-gap III nitrides." Physical Review Letters 100(11):117204.
    Dietl, T. (2010). "A ten-year perspective on dilute magnetic semiconductors and oxides." Nature Materials 9(12):965-974.
    Elfimov, I. S., S. Yunoki, et al. (2002). "Possible path to a new class of ferromagnetic and half-metallic ferromagnetic materials." Physical Review Letters 89(21):216403.
    Erwin, S. C., L. Zu, et al. (2005). "Doping semiconductor nanocrystals." Nature 436(7047):91-94.
    Garcia, M. A., J. M. Merino, et al. (2007). "Magnetic properties of ZnO nanoparticles." Nano Letters 7(6):1489-1494.
    Guglieri, C. and J. Chaboy (2010). "Characterization of the ZnO-ZnS interface in thiol-capped zno nanoparticles exhibiting anomalous magnetic properties." Journal of Physical Chemistry C 114(46):19629-19634.
    Hong, J. I., J. Choi, et al. (2012). "Magnetism in dopant-free Zno nanoplates." Nano Letters 12(2): 576-581.
    Kresse, G and J. Furthmuller (1996). "Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set." Computational Materials Science 6(1): 15-50.
    Kresse, G. and J. Furthmuller (1996). "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set." Physical Review B 54(16):11169-11186.
    Lard6, R., E. Talbot, et al. (2011). "Evidence of superparamagnetic Co clusters in pulsed laser deposition-grown Zn0.9Co0.1O thin films using atom probe tomography." Journal of the American Chemical Society 133(5):1451-1458.
    Liang, W., B. D. Yuhas, et al. (2009). "Magnetotransport in Co-Doped ZnO nanowires." Nano Letters 9(2):892-896.
    Liu, T., H. Xu, et al. (2008). "Local structural evolution of Co-Doped ZnO nanoparticles upon calcination studied by in situ quick-scan XAFS." The Journal of Physical Chemistry C 112(10):3489-3495.
    Merkulov, I. A. and A. V. Rodina (2010). Exchange interaction between carriers and magnetic ions in quantum size heterostructures. Introduction to the Physics of Diluted Magnetic Semiconductors. J. A. Gaj and J. Kossut, Springer Berlin Heidelberg.144:65-101.
    Merkulov, I. A., D. R. Yakovlev, et al. (1999). "Kinetic exchange between the conduction band electrons and magnetic ions in quantum-confined structures." Physical Review Letters 83(7): 1431-1434.
    Norberg, N. S., G. M. Dalpian, et al. (2006). "Energetic pinning of magnetic impurity levels in quantum-confined semiconductors." Nano Letters 6(12):2887-2892.
    Norberg, N. S., K. R. Kittilstved, et al. (2004). "Synthesis of colloidal Mn2+:ZnO quantum dots and high-Tc ferromagnetic nanocrystalline thin films." Journal of the American Chemical Society 126(30):9387-9398.
    Ochsenbein, S. T., Y. Feng, et al. (2009). "Charge-controlled magnetism in colloidal doped semiconductor nanocrystals." Nat Nano 4(10):681-687.
    Pan, H., J. B. Yi, et al. (2007). "Room-temperature ferromagnetism in carbon-doped ZnO." Physical Review Letters 99(12):127201.
    Peng, H-, H. J. Xiang, et al. (2009). "Origin and enhancement of hole-induced ferromagnetism in first-row d0 semiconductors." Physical Review Letters 102(1):017201.
    Perdew, J. P. and Y. Wang (1992). "Accurate and simple analytic representation of the electron-gas correlation energy." Physical Review B 45(23):13244-13249.
    Qiu, X., L. Li, et al. (2007). "Metal-semiconductor hybrid nanostructure Ag-Zno.9Coo.1O: synthesis and room-temperature ferromagnetism." Journal of the American Chemical Society 129(39):11908-11909.
    Radovanovic, P. V., N. S. Norberg, et al. (2002). "Colloidal transition-metal-doped ZnO quantum dots." Journal of the American Chemical Society 124(51):15192-15193.
    Reiss, G. and A. Hutten (2005). "Magnetic nanoparticles-applications beyond data storage." Nature Materials 4(10):725-726.
    Sato, K., L. Bergqvist, et al. (2010). "First-principles theory of dilute magnetic semiconductors." Reviews of Modern Physics 82(2):1633-1690.
    Schrier, J., D. O. Demchenko, et al. (2007). "Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications." Nano Letters 7(8):2377-2382.
    Schwartz, D. A., N. S. Norberg, et al. (2003). "Magnetic quantum dots:Synthesis, spectroscopy, and magnetism of CO2+-and Ni2+-doped ZnO nanocrystals." Journal of the American Chemical Society 125(43):13205-13218.
    Schwartz, D. A., N. S. Norberg, et al. (2003). "Magnetic quantum dots:synthesis, spectroscopy, and magnetism of Co2+-and Ni2+-Doped ZnO nanocrystals." Journal of the American Chemical Society 125(43):13205-13218.
    Shi, T., S. Zhu, et al. (2007). "Structures and magnetic properties of wurtzite Zn1-xCOxO dilute magnetic semiconductor nanocomposites." Applied Physics Letters 90(10):-
    Sun, Z., W. Yan, et al. (2013). "XAFS in dilute magnetic semiconductors." Dalton Transactions 42(38):13779-13801.
    Viswanatha, R., J. M. Pietryga, et al. (2011). "Spin-polarized Mn2+emission from Mn-doped colloidal nanocrystals." Physical Review Letters 107(6):067402.
    Wolf, S. A., D. D. Awschalom, et al. (2001). "Spintronics:a spin-based electronics vision for the future." Science 294(5546):1488-1495.
    Wu, H., A. Stroppa, et al. (2010). "Magnetism in C-or N-doped MgO and ZnO:a density-functional study of impurity pairs." Physical Review Letters 105(26).
    Yao, T., Z. Sun, et al. (2010). "Insights into initial kinetic nucleation of gold nanocrystals." Journal of the American Chemical Society 132(22):7696-7701.
    Yao, T., W. Yan, et al. (2009). "High-temperature ferromagnetism of hybrid nanostructure Ag-Zn0.92Co0.08O dilute magnetic semiconductor." The Journal of Physical Chemistry C 113(9): 3581-3585.
    Yao, T., X. Zhang, et al. (2010). "Understanding the nature of the kinetic process in a VO2 metal-insulator transition." Physical Review Letters 105(22):226405.
    Yuhas, B. D., S. Fakra, et al. (2007). "Probing the local coordination environment for transition metal dopants in zinc oxide nanowires." Nano Letters 7(4):905-909.
    Zhang, L.-J., J.-Q. Wang, et al. (2012). "High-Tc ferromagnetism in a Co-doped ZnO system dominated by the formation of a zinc-blende type Co-rich ZnCoO phase." Chemical Communications 48(1):91-93.
    Zhang, Z. H., X. Wang, et al. (2009). "Evidence of intrinsic ferromagnetism in individual dilute magnetic semiconducting nanostructures." Nat Nano 4(8):523-527.
    Zhu, Y. F., D. H. Fan, et al. (2008). "A general chemical conversion route to synthesize various ZnO-based core/shell structures." The Journal of Physical Chemistry C 112(28): 10402-10406.
    Ankudinov, A. L., B. Ravel, et al. (1998). "Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure." Physical Review B 58(12): 7565-7576.
    Chen, H. M., C. K. Chen, et al. (2011). "A new approach to solar hydrogen production:a ZnO-ZnS solid solution nanowire array photoanode." Advanced Energy Materials 1(5): 742-747.
    Chen, X. B. and C. Burda (2008). "The electronic origin of the visible-light absorption properties of C-, N-and S-doped TiO2 nanomaterials." Journal of the American Chemical Society 130(15):5018-+.
    Djurisic, A. B. and Y. H. Leung (2006). "Optical properties of ZnO nanostructures." Small 2(8-9): 944-961.
    Ford, A. C., S. Chuang, et al. (2010). "Patterned p-doping of InAs nanowires by gas-phase surface diffusion of Zn." Nano Letters 10(2):509-513.
    Foreman, J. V., J. Y. Li, et al. (2006). "Time-resolved investigation of bright visible wavelength luminescence from sulfur-doped ZnO nanowires and micropowders." Nano Letters 6(6): 1126-1130.
    Guglieri, C. and J. Chaboy (2010). "Characterization of the ZnO-ZnS Interface in THIOL-Capped ZnO Nanoparticles Exhibiting Anomalous Magnetic Properties." Journal of Physical Chemistry C 114(46):19629-19634.
    Guo, M. Y., A. M. C. Ng, et al. (2011). "Effect of native defects on photocatalytic properties of ZnO." Journal of Physical Chemistry C 115(22):11095-11101.
    Guo, S. Y., S. Han, et al. (2014). "Structurally controlled ZnO/TiO2 heterostructures as efficient photocatalysts for hydrogen generation from water without noble metals:The role of microporous amorphous/crystalline composite structure." Journal of Power Sources 245: 979-985.
    He, J. F., S. B. Zhang, et al. (2014). "Realizing high visible-light-induced carriers mobility in TiO2-based photoanodes." Journal of Power Sources 251:195-201.
    Hsu, C. H. and D. H. Chen (2011). "Photoresponse and stability improvement of ZnO nanorod array thin film as a single layer of photoelectrode for photoelectrochemical water splitting." International Journal of Hydrogen Energy 36(24):15538-15547.
    Hsu, Y. K., Y. G. Lin, et al. (2011). "Polarity-dependent photoelectrochemical activity in ZnO nanostructures for solar water splitting." Electrochemistry Communications 13(12): 1383-1386.
    Lin, B. X., Z. X. Fu, et al. (2001). "Green luminescent center in undoped zinc oxide films deposited on silicon substrates." Applied Physics Letters 79(7):943-945.
    Lotus, A. F., S. N. Tacastacas, et al. (2011). "Fabrication and characterization of TiO2-ZnO composite nanofibers." Physica E-Low-Dimensional Systems & Nanostructures 43(4): 857-861.
    Payne, M. C., M. P. Teter, et al. (1992). "Iterative minimization techniques for abinitio total-energy calculations-molecular-dynamics and conjugate gradients." Reviews of Modern Physics 64(4):1045-1097.
    Qiu, Y. C., K. Y. Yan, et al. (2012). "Secondary Branching and Nitrogen Doping of ZnO Nanotetrapods:Building a Highly Active Network for Photoelectrochemical Water Splitting." Nano Letters 12(1):407-413.
    Shen, G. Z., J. H. Cho, et al. (2005). "Synthesis and characterization of S-doped ZnO nanowires produced by a simple solution-conversion process." Chemical Physics Letters 401(4-6): 529-533.
    Shen, G. Z., J. H. Cho, et al. (2005). "Synthesis and optical properties of S-doped ZnO nanostructures:Nanonails and nanowires." Journal of Physical Chemistry B 109(12): 5491-5496.
    Shet, S. (2011). Zinc Oxide (ZnO) Nanostructures for photoelectrochemical water splitting application, nanotechnology. O. Leonte, Z. Aguilar, C. Bock and E. Traversa.33:15-25.
    Shet, S., K. S. Ahn, et al. (2010). "Influence of gas ambient on the synthesis of co-doped ZnO:(Al,N) films for photoelectrochemical water splitting." Journal of Power Sources 195(17):5801-5805.
    Shet, S., K. S. Ahn, et al. (2010). "Synthesis and characterization of band gap-reduced ZnO:N and ZnO:(A1,N) films for photoelectrochemical water splitting." Journal of Materials Research 25(1):69-75.
    Shet, S., K. S. Ahn, et al. (2011). "Phase separation in Ga and N co-incorporated ZnO films and its effects on photo-response in photoelectrochemical water splitting." Thin Solid Films 519(18): 5983-5987.
    Son, D. I., B. W. Kwon, et al. (2012). "Emissive ZnO-graphene quantum dots for white-light-emitting diodes." Nature Nanotechnology 7(7):465-471.
    Srikant, V. and D. R. Clarke (1998). "On the optical band gap of zinc oxide." Journal of Applied Physics 83(10):5447-5451.
    Sun, Y. P., T. He, et al. (2010). "Structural and optical properties of the S-doped ZnO particles synthesized by hydrothermal method." Applied Surface Science 257(3):1125-1128.
    Walter, M. G, E. L. Warren, et al. (2010). "Solar Water Splitting Cells." Chemical Reviews 110(11):6446-6473.
    Wang, J. C., P. Liu, et al. (2009). "Relationship between Oxygen Defects and the Photocatalytic Property of ZnO Nanocrystals in Nafion Membranes." Langmuir 25(2):1218-1223.
    Wei, Y. F., L. Ke, et al. (2012). "Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with Ag nanoparticles." Nanotechnology 23(23).
    Wolcott, A., W. A. Smith, et al. (2009). "Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting." Advanced Functional Materials 19(12): 1849-1856.
    Yan, W., Q. Liu, et al. (2013). "Realizing Ferromagnetic Coupling in Diluted Magnetic Semiconductor Quantum Dots." Journal of the American Chemical Society 136(3): 1150-1155.
    Yan, W. S., Q. H. Jiang, et al. (2010). "Determination of the role of O vacancy in Co:ZnO magnetic film." Journal of Applied Physics 108(1):13901-13904.
    Yan, W. S., Z. H. Sun, et al. (2010). "Mediating distribution of magnetic Co ions by Cr-codoping in (Co,Cr):ZnO thin films." Applied Physics Letters 97(4).
    Yang, X. Y, A. Wolcott, et al. (2009). "Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting." Nano Letters 9(6):2331-2336.
    Yoo, Y. Z., Z. W. Jin, et al. (2002). "S doping in ZnO film by supplying ZnS species with pulsed-laser-deposition method." Applied Physics Letters 81(20):3798-3800.
    Yousefi, R. and B. Kamaluddin (2010). "The effects of annealing temperature on structural and optical properties of S-doped ZnO nanobelts." Solid State Sciences 12(2):252-256.
    Zeng, H. B., G T. Duan, et al. (2010). "Blue luminescence of ZnO nanoparticles based on non-equilibrium processes:Defect origins and emission controls." Advanced Functional Materials 20(4):561-572.
    Zhang, X. H., X. Q. Yan, et al. (2009). "Structure and photoluminescence of S-doped ZnO nanorod arrays." Materials Letters 63(3-4):444-446.
    Zheng, Y, C. Chen, et al. (2007). "Luminescence and photocatalytic activity of ZnO nanocrystals: Correlation between structure and property." Inorganic Chemistry 46(16):6675-6682.
    Bai, S., L. Zhang, et al. (2013). "Two dimensional woven nanogenerator." Nano Energy 2(5): 749-753.
    Cui, N., W. Wu, et al. (2012). "Magnetic force driven nanogenerators as a noncontact energy harvester and sensor." Nano Letters 12(7):3701-3705.
    Djurisic, A. B. and Y. H. Leung (2006). "Optical properties of ZnO nanostructures." Small 2(8-9): 944-961.
    Erhart, P., K. Albe, et al. (2006). "First-principles study of intrinsic point defects in ZnO:Role of band structure, volume relaxation, and finite-size effects." Physical Review B 73(20).
    Ferrari, A. C., J. C. Meyer, et al. (2006). "Raman spectrum of graphene and graphene layers." Physical Review Letters 97(18).
    Ganguly, A., S. Sharma, et al. (2011). "Probing the thermal deoxygenation of graphene oxide using high-resolution in situ x-ray-based spectroscopies." Journal of Physical Chemistry C 115(34):17009-17019.
    Guglieri, C. and J. Chaboy (2010). "Characterization of the ZnO-ZnS Interface in thiol-capped zno nanoparticles exhibiting anomalous magnetic properties." Journal of Physical Chemistry C 114(46):19629-19634.
    Hansen, B. J., Y. Liu, et al. (2010). "Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy." Acs Nano 4(7):3647-3652.
    Holzwarth, U. and N. Gibson (2011). "The Scherrer equation versus the'Debye-Scherrer equation'." Nature Nanotechnology 6(9):534-534.
    Hu, Y., Y. Zhang, et al. (2010). "High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display." Nano Letters 10(12):5025-5031.
    Huang, C. T., J. H. Song, et al. (2010). "Single-InN-nanowire nanogenerator with upto 1 V output voltage." Advanced Materials 22(36):4008-4013.
    Janotti, A. and C. G. Van de Walle (2005). "Oxygen vacancies in ZnO." Applied Physics Letters 87(12).
    Janotti, A. and C. G. Van de Walle (2007). "Native point defects in ZnO." Physical Review B 76(16).
    Kohan, A. F., G. Ceder, et al. (2000). "First-principles study of native point defects in ZnO." Physical Review B 61(22):15019-15027.
    Lin, Y.-F, J. Song, et al. (2008). "Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect." Advanced Materials 20(16):3127-3130.
    Lin, Y.-F., J. Song, et al. (2008). "Piezoelectric nanogenerator using CdS nanowires." Applied Physics Letters 92(2).
    Park, K.-L, S. Xu, et al. (2010). "Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates." Nano Letters 10(12):4939-4943.
    Que, R. H., M. W. Shao, et al. (2011). "Silicon nanowires with permanent electrostatic charges for nanogenerators." Nano Letters 11(11):4870-4873.
    Que, R. H., Q. Shao, et al. (2012). "Flexible nanogenerators based on graphene oxide films for acoustic energy harvesting." Angewandte Chemie-International Edition 51(22):5418-5422.
    Reina, A., X. T. Jia, et al. (2009). "Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition." Nano Letters 9(1):30-35.
    Schrier, J., D. O. Demchenko, et al. (2007). "Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications." Nano Letters 7(8):2377-2382.
    Shi, T. F., Z. G. Xiao, et al. (2010). "The role of Zn interstitials in cobalt-doped ZnO diluted magnetic semiconductors." Applied Physics Letters 96(21).
    Shin, H. J., W. M. Choi, et al. (2010). "Control of Electronic Structure of Graphene by Various Dopants and Their Effects on a Nanogenerator." Journal of the American Chemical Society 132(44):15603-15609.
    Song, J. H., J. Zhou, et al. (2006). "Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the-environment." Nano Letters 6(8):1656-1662.
    Tian, H., S. Ma, et al. (2013). "Flexible electrostatic nanogenerator using graphene oxide film." Nanoscale 5(19):8951-8957.
    Vanheusden, K., C. H. Seager, et al. (1996). "Correlation between photoluminescence and oxygen vacancies in ZnO phosphors." Applied Physics Letters 68(3):403-405.
    Wang, X. D., J. H. Song, et al. (2007). "Direct-current nanogenerator driven by ultrasonic waves." Science 316(5821):102-105.
    Wang, Z. L. and J. H. Song (2006). "Piezoelectric nanogenerators based on zinc oxide nanowire arrays." Science 312(5771):242-246.
    Yan, W., Q. Liu, et al. (2013). "Realizing ferromagnetic coupling in diluted magnetic semiconductor quantum dots." Journal of the American Chemical Society 136(3):1150-1155.
    Yang, R., Y. Qin, et al. (2009). "Converting Biomechanical Energy into Electricity by a Muscle-Movement-Driven Nanogenerator." Nano Letters 9(3):1201-1205.
    Yu, A. F., Y. Zhao, et al. (2013). "A nanogenerator as a self-powered sensor for measuring the vibration spectrum of a drum membrane." Nanotechnology 24(5).
    Zhang, S. B., S. H. Wei, et al. (2001). "Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO." Physical Review B 63(7).
    Zhu, G, R. Yang, et al. (2010). "Flexible high-output nanogenerator based on lateral zno nanowire array." Nano Letters 10(8):3151-3155.