1. [地质云]滑坡
拉曼光镊表征偶氮聚合物囊泡光响应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光镊是利用高度聚焦的激光微束形成的光学梯度力势阱来实现对微纳米量级粒子的捕获与操控的技术,它所产生的皮牛量级的力正好适用于操控微纳米量级的粒子。随着各种新技术的出现,光镊技术近年来发展十分迅速,出现了阵列光镊,表面等离子体光镊,涡旋光镊等新型光镊。同时光镊技术与其他技术相结合,比如光刀、双光束干涉技术、微弱荧光检测技术、扫描共焦显微技术、电泳及光谱分析,拉曼光谱等,更是扩大了其应用领域。
     Raman光谱是分析物质化学组分和结构的重要检测技术,它具有化学指纹识别的功效,与荧光光谱相比,Raman光谱具有不受水的吸收影响,不需要对样品进行复杂的荧光标记,样品用量少等优点。我们将显微拉曼光谱技术和光镊操纵技术相结合,利用785nm激光做光源,研制了一台拉曼光镊系统,该系统可以同时实现稳定捕获单个微米粒子并长时间稳定激发收集拉曼光谱信号的功能。由于粒子被稳定的俘获在远离波片表面的液体中,可以避免样品池表面对探测信号的干扰,因此在悬浮胶体体系微粒光谱探测中具有很大的优势。
     两亲嵌段共聚物具有亲水和疏水两部分,能够自组装形成微米尺度的聚集体,胶束。嵌段共聚物的组装和小分子表面活性剂一样,在溶液中能够呈现出不同的形态,如复合胶束、圆球状、长棒状、空心囊泡等。由于嵌段共聚物制备的囊泡的研究在微反应器,药物输运,对比增强成像和模拟生物膜等方面的应用潜力很大,聚合物囊泡研究引起了科学家们的广泛兴趣。在溶液中,含有偶氮生色团的亲疏水两嵌段聚合物在光辐照下具有光响应特性,如光诱导沉淀,凝聚和自组织等。最近,含有偶氮苯生色团的两亲性嵌段共聚物受到人们广泛的关注。不同波长光照下,偶氮基团的顺反异构反应将使偶氮聚合物的结构和性质发生变化,这种微观变化会导致宏观转变。正是由于聚合物囊泡的巨大应用前景,我们利用拉曼光镊对偶氮囊泡体系的光响应行为进行了一系列实验研究。本文工作主要包括:研制具有光镊捕获,拉曼光谱探测,紫外激发等多种探测功能的拉曼光镊系统,对偶氮聚合物组装的囊泡结构的光响应行为进行表征,通过探测交联剂以及间隔基对囊泡膜性质的影响,推理囊泡光致形变过程中的反应机理;组装双组份偶氮囊泡发现了微相分离现象,并对微区内光致异构速率进行分析;利用微针吸附方法探测了偶氮囊泡的表面弹性模量。
     本论文内容一共九章。第一章绪论,主要介绍拉曼光镊的研究背景,应用和研究现状以及将拉曼光镊应用于偶氮囊泡的研究意义。第二章首先介绍拉曼光镊实验设备的设计原理,系统构成,应用范围以及使用方法。然后介绍将拉曼光镊系统应用于偶氮囊泡的光响应研究而进行的几个实验。第三章是交联囊泡的伸缩膨胀速率分析,第四章是对不同间隔基长度的偶氮囊泡发生不同的光致可逆形貌转化的机理分析,第五章是甲氧基偶氮囊泡的破裂重组,第六章介绍双组份囊泡的微相分离,第七章讲述偏振拉曼探测囊泡表面基团取向等。第八章将微针与光镊结合起来探测囊泡膜的弹性模量。最后第九章是论文的总结与展望。
     本文的创新点主要在于发展光镊技术使之与拉曼光谱技术相结合形成一套多功能探测系统。利用这套系统应用于对偶氮聚合物囊泡的光响应特性进行研究,得到一系列新现象比如光致形貌转化,微相分离运动,破裂重组等,并根据这些过程中拉曼光谱信号演化对其机理做了解释。这项研究对于探索新型功能囊泡制备有很大的借鉴意义。
Optical tweezers(OT) are the beam gradient optical traps where micro particles could be trapped by focusing the laser beam using a microscope objective. The gradient force generated by optical tweezers is in the pinoNewton region and is suitable to trap and manipulate microscale and nano-scale particles. In the last ten years, with the advent of new technologies like plasma, hologram, and photon crystal fiber the OT technologies develops very quickly, a lot of new OTs have been created such as surface plasmon optical tweezers(SPOT), optical trap array and optical vertex trap and so on. When combined with other technologies such as weak fluorescence detection technology, dual-beam interference technique, scanning confocal microscopy and Raman spectrum, the application areas of OT are much more expansive.
     Raman spectroscopy is an important detection technique in analyzing the chemical composition and structure of matter. It is able to achieve chemical fingerprint recognition and plays a unique role in chemistry, materials science, biomedicine, food hygiene, environmental monitoring and other fields. Compared with the fluorescence detection technology, its ascendancy lie in weak absorption of water from the sample, is unnecessary complex fluorescent labeling, only require a small amount of sample etc. We employ the785nm diode laser as the light source of OT and combined the Raman spectrometer to build a set of optical tweezers Raman spectrum (OTRS) system. The OTRS system can capture a single micron particles to collect Raman spectra excitation signal stably for long time. Since the particle is stably trapped in liquid remote from the surface of glass-plate to avoid interference with the surface effect of the sample cell, it is suitable in the spectrum detection of suspended particle in colloidal system.
     Amphiphilic block copolymers can self-assemble to form micron size aggregates or micelles. Block copolymer aggregates, like small molecule surfactants, can assume a range of different morphologies in dilute solution, including spheres, rods, vesicles, compound micelles, and others. In the past years, vesicles prepared from block copolymers have been well investigated. The interest in polymer vesicles was motivated, in part, by their potential use as micro reactors, targeted drug delivery, contrast enhanced imaging, and mimic for biological membranes. In solutions of amphiphilic molecules or polymers containing suitable chromophores, exposure to light can be used to achieve photo responses, such as precipitation, aggregation, and self-assembly. Recently, azobenzene-containing amphiphilic block polymers have received considerable attention. Upon light irradiation, azobenzene polymers can show a variety of structure and property variations triggered by the trans-cis photoisomerization of the azo chromophores, which in turn triggers mesoscopic up to macroscopic changes. Base on the big application potential of the polymer vesicle system, we utilize the OTRS system to study the photoresponsive behaviors of azobenzene vesicles. They are described in the following part.
     There are nine chapters in this thesis. The first chapter is the introduction of my work, include the research background status of OTRS, and the significance of studying property of azobenzene containing vesicles. The second chapter we describe the design principles, system configuration of OTRS system and its applications and instruction. And then in the next six chapters, I present six experiments about the application of OTRS system in the photo response behaviors of azobenzene containing polymer vesicle. The first experiment is I add the cross linker (Dibromopropane, DBP) to the membrane of the azobenzene polymer vesicles (PNIPAM-b-PAzPy6), and detecte the photo induced shrink-expansion of vesicle under UV light. The next experiment is three kind of polymers with different space chain length self-assemble vesicle have different morphology change under UV light irradiation. We also used another azobenzene polymer (PNIPAM-b-PAzoMO) to prepare vesicle, and it ruptures and reconstructed in to small vesicle under UV light. When two different azobenzene polymer are combined in the same solution, they formed Janus vesicles. The two part of the binary vesicle have different rate of trans-cis isomerization. We add polarize element to the OTRS system to detect the orientation of azobenzene group in the shell of vesicle under UV light. Because the mechanical property is important in the stability of the vesicle, and it is harder than the small molecular vesicles, I used the micropipette absorption (MPA) technology to detect the elastic modular of the polymer vesicles.
     The main innovation of this dissertation is to develop optical tweezer technology. I combined optical tweezers and Raman spectroscopy to form a versatile detection system OTRS. I use this detect system to study the photo induced transform behaviors of azobenzene containing polymer vesicles, and base on the Raman change analyzed its mechanism. The study have major implications for the exploration of new functional vesicles.
引文
1. Ashkin A, Dziedzic J. Optical trapping and manipulation of viruses and bacteria [J]. Science, 1987,235(4795):1517-1520.
    2. Cardenas N, Mohanty S K. Optical tweezers assisted quantitative phase imaging led to thickness mapping of red blood cells [J]. Applied Physics Letters,2013,103(1):
    3. Kandinov A, Raghunathan K, Meiners J C. Determining the Elasticity of Short DNA Fragments using Optical Tweezers and Protein-Mediated DNA Loop Formation Assays [J]. Biophysical Journal, 2013,104(2):262a-262e.
    4. LaFratta C N. Optical tweezers for medical diagnostics [J]. Analytical and Bioanalytical Chemistry,2013,405(17):5671-5677.
    5. van Loenhout M T J, De Vlaminck I, Flebus B, et al. Scanning a DNA Molecule for Bound Proteins Using Hybrid Magnetic and Optical Tweezers [J]. Plos One,2013,8(6):
    6. Zhong M C, Wei X B, Zhou J H, et al. Trapping red blood cells in living animals using optical tweezers [J]. Nature Communications,2013,4(6):1768-1772.
    7. Soni G V, Jonsson M P, Dekker C. Periodic Modulations of Optical Tweezers Near Solid-State Membranes [J]. Small,2013,9(5):679-684.
    8. Taylor M A, Knittel J, Bowen W P. Optical lock-in particle tracking in optical tweezers [J]. Optics Express,2013,21(7):8018-8024.
    9. Cosgrove T. Colloid Science:Principles, Methods and Applications [M]. Wiley,2005.
    10. Wang X L, Gou X, Chen S X, et al. Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition [J]. Journal of Micromechanics and Microengineering, 2013,23(7):1517-1520.
    11. Yupapin P P, Kulsirirat K, Techithdeera W. Optical Capsule and Tweezer Array for Molecular Motor Use [J]. Ieee Transactions on Nanobioscience,2013,12(3):222-227.
    12. Eckert K, Mompart J, Birkl G, et al. One-and two-dimensional quantum walks in arrays of optical traps [J]. Physical Review A,2005,72(1):012327.
    13. Gibson G, Carberry D M, Whyte G, et al. Holographic assembly workstation for optical manipulation [J]. Journal of Optics A:Pure and Applied Optics,2008,10(4):044009.
    14. Grier D G. A revolution in optical manipulation [J]. Nature,2003,424(6950):810-816.
    15. Libal A, Reichhardt C, Reichhardt C O. Realizing colloidal artificial ice on arrays of optical traps [J]. Physical Review Letters,2006,97(22):228302.
    16. Hertz H. Standing-wave acoustic trap for nonintrusive positioning of microparticles [J]. Journal of Applied Physics,1995,78(8):4845-4849.
    17. Svoboda K, Block S M. Biological applications of optical forces [J]. Annual review of biophysics and biomolecular structure,1994,23(1):247-285.
    18. Stilgoe A B, Heckenberg N R, Nieminen T A, et al. Phase-Transition-like Properties of Double-Beam Optical Tweezers [J]. Physical Review Letters,2011,107(24):
    19. Indian Institute of Management Ahmedabad. Assessing the regional and district capacity for operationalizing emergency obstetric care through first referral units in Gujarat [M]. Ahmedabad:Indian Institute of Management,2009.
    20. Smith F, RamosGabatin A, Olalde L. Reduced particle size sulfur colloid for lymphoscintigraphy. [J]. Journal of Nuclear Medicine,1996,37(5):1403-1403.
    21. Muniappan R, Reddy G V P, Raman A. Biological control of tropical weeds using arthropods [M]. Cambridge, UK; New York:Cambridge University Press,2009.
    22. Koehn F E, Carter G T. The evolving role of natural products in drug discovery [J]. Nature Reviews Drug Discovery,2005,4(3):206-220.
    23. Fontes A, Ajito K, Neves A A R, et al. Raman, hyper-Raman, hyper-Rayleigh, two-photon luminescence and morphology-dependent resonance modes in a single optical tweezers system [J]. Physical Review E,2005,72(1):
    24. Williams P S, Xu Y H, Reschiglian P, et al. Colloid characterization by sedimentation field flow fractionation:Correction for particle-wall interaction [J]. Analytical Chemistry,1997,69(3):349-360.
    25. Tao Z H, Wang G W, Xu X D, et al. Monitoring and rapid quantification of total carotenoids in Rhodotorula glutinis cells using laser tweezers Raman spectroscopy [J]. Ferns Microbiology Letters, 2011,314(1):42-48.
    26. King M D, Thompson K C, Ward AD, et al. Oxidation of biogenic and water-soluble compounds in aqueous and organic aerosol droplets by ozone:a kinetic and product analysis approach using laser Raman tweezers [J]. Faraday Discussions,2008,137(173-192.
    27. Xie C, Dinno M A, Li Y-q. Near-infrared Raman spectroscopy of single optically trapped biological cells [J]. Optics Letters,2002,27(4):249-251.
    28. Wright L S, Chowdhury A, Russo P. Static light scattering instrument for rapid and time-resolved particle sizing in polymer and colloid solutions [J]. Review of Scientific Instruments,1996,67(10):3645-3648.
    29. Raman B V, Vasudev G D. Dr. B.V. Raman:the man and his mission [M]. New Delhi Mumbai: UBS Publishers' Distributors; Distributors for Western India, Preface Books,2000.
    30. Letokhov V S, Meystre P. Advances in laser physics [M]. Australia:Harwood Academic,2000.
    31. Grasselli J G, Bulkin B J. Analytical Raman spectroscopy [M]. New York:Wiley,1991.
    32. Petrov D. Raman spectroscopy of optically trapped particles [J]. JOURNAL OF OPTICS A PURE AND APPLIED OPTICS,2007,9(8):S139.
    33. Degueldre C, Favarger P Y, Wold S. Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode [J]. Analytica Chimica Acta,2006,555(2):263-268.
    34. Degueldre C, Favarger P Y, Rosse R, et al. Uranium colloid analysis by single particle inductively coupled plasma-mass spectrometry [J]. Talanta,2006,68(3):623-628.
    35. Nicolaou K, Pfefferkorn J, Roecker A, et al. Natural product-like combinatorial libraries based on privileged structures.1. General principles and solid-phase synthesis of benzopyrans [J]. Journal of the American Chemical Society,2000,122(41):9939-9953.
    36. Melrose J R. Colloid flow during thickening-a particle level understanding for core-shell particles [J]. Faraday Discussions,2003,123(355-368.
    37. Andrew D. Analysis of liposomal membrane composition using Raman tweezers [J]. Chemical Communications,2004,9):1120-1121.
    38. Kitamura N, Kitagawa F. Optical trapping—chemical analysis of single microparticles in solution [J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2003,4(3):227-
    39. Wu H, Volponi J V, Oliver A E, et al. In vivo lipidomics using single-cell Raman spectroscopy [J]. Proceedings of the National Academy of Sciences,2011,108(9):3809-3814.
    40. Schaefer J J, Ma C, Harris J M. Confocal Raman Microscopy Probing of Temperature-Controlled Release from Individual, Optically-Trapped Phospholipid Vesicles [J]. Analytical Chemistry, 2012,84(21):9505-9512.
    41. Cherney D P, Harris J M. Confocal Raman microscopy of optical-trapped particles in liquids [J]. Annual review of analytical chemistry,2010,3(6):277-297.
    42. Korir G K, Karukstis K K. Azo dye aggregation on catanionic vesicle surfaces [J]. Abstracts of Papers of the American Chemical Society,2004,227(4):U481-U485.
    43. Li N, Wang X G. Hollow and Vesicle-Like Aggregates of an Amphiphilic Azo Random Copolymer Bearing Branched Azobenzene Side Chains[J]. Acta Polymerica Sinica,2013,4):549-555.
    44. Perelman L A, Karukstis K K. Spectroscopic characterization of azo dye aggregation on catanionic vesicle surfaces. [J]. Abstracts of Papers of the American Chemical Society,2003,225(7): U657-U658.
    45. Mabrouk E, Cuvelier D, Brochard-Wyart F, et al. Bursting of sensitive polymersomes induced by curling [J]. Proceedings of the National Academy of Sciences,2009,106(18):7294-7298.
    46. Jin H, Zheng Y, Liu Y, et al. Reversible and Large-Scale Cytomimetic Vesicle Aggregation: Light-Responsive Host-Guest Interactions [J]. Angewandte Chemie International Edition,2011,50(44): 10352-10356.
    47. Wang Y, Lin S, Zang M, et al. Self-assembly and photo-responsive behavior of novel ABC2-type block copolymers containing azobenzene moieties [J]. Soft Matter,2012,8(11):3131-3138.
    48. Viswanathan N, Kim D, Tripathy S. Surface relief structures on azo polymer films [J]. Journal of Materials Chemistry,1999,9(9):1941-1955.
    49. Li Y, He Y, Tong X, et al. Photoinduced deformation of amphiphilic azo polymer colloidal spheres [J]. Journal of the American Chemical Society,2005,127(8):2402-2403.
    1.许以明.拉曼光谱及其在结构生物学中的应用[M].1 ed.:化学工业出版社,2005.
    2.程光煦.拉曼布里渊散射[M].2 ed.:科学出版社,2008.
    3. Torimitsu K. Applications of raman spectroscopy in biology:from basic studies to disease diagnosis [M]. Washington, DC:IOS Press,2012.
    4. H.Niemz M. Laser-Tissue Interactions [M]. 西安:西安交通大学出版社,1998.
    5. Brunner H. Resonance Raman scattering on the haem group of cytochrome c [J]. Biochemical and Biophysical Research Communications,1973,51(4):888-894.
    6. Bhaskaram K, Murthy A S, Raman K V. Agriculture in Andhra Pradesh [M]. Hyderabad:Farmers' Welfare Trust and Society of Scientists for Advancement of Agriculture,1982.
    7. Ashkin A, Dziedzic J. Optical trapping and manipulation of viruses and bacteria [J]. Science, 1987,235(4795):1517-1520.
    8. Ashkin A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime [J]. Methods in Cell Biology, Vol 55,1998,55(1-27.
    9. Nieminen T A, Knoner G, Heckenberg N R, et al. Physics of optical tweezers [J]. Laser Manipulation of Cells and Tissues,2007,82(207-236.
    10. Pfeifer R N C, Nieminen T A, Heckenberg N R, et al. Optical tweezers and paradoxes in electromagnetism [J]. Journal of Optics,2011,13(4):
    11. Ashkin A, Schutze K, Dziedzic J M, et al. Force Generation of Organelle Transport Measured Invivo by an Infrared-Laser Trap [J]. Nature,1990,348(6299):346-348.
    12. Stilgoe A B, Nieminen T A, Knoner G, et al. The effect of Mie resonances on trapping in optical tweezers [J]. Optics Express,2008,16(19):15039-15051.
    13. Shima K, Omori R, Suzuki A. Forces of a single-beam gradient-force optical trap on dielectric spheroidal particles in the geometric-optics regime [J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,1998,37(11):6012-6015.
    14. Bui A A M, Stilgoe A B, Nieminen T A, et al. Calibration of nonspherical particles in optical tweezers using only position measurement [J]. Optics Letters,2013,38(8):1244-1246.
    15. Simmons R M, Finer J T, Chu S, et al. Quantitative measurements of force and displacement using an optical trap [J]. Biophysical Journal,1996,70(4):1813-1822.
    16. Ghislain L P, Webb W W. Scanning-force microscope based on an optical trap [J]. Optics Letters, 1993,18(19):1678-1680.
    17. Thammawongsa N, Zainol F D, Mitatha S, et al. Nanorobot Controlled by Optical Tweezer Spin for Microsurgical Use [J]. Ieee Transactions on Nanotechnology,2013,12(1):29-34.
    18. Vermeulen K C, Wuite G J, Stienen G J, et al. Optical trap stiffness in the presence and absence of spherical aberrations [J]. Applied optics,2006,45(8):1812-1819.
    1. Ran X, Wang H T, Zhang P, et al. Photo-induced fiber-vesicle morphological change in an organogel based on an azophenyl hydrazide derivative [J]. Soft Matter,2011,7(18):8561-8566.
    2. Lin Y L, Chang H Y, Sheng Y J, et al. Photoresponsive Polymersomes Formed by Amphiphilic Linear-Dendritic Block Copolymers:Generation-Dependent Aggregation Behavior [J]. Macromolecules, 2012,45(17):7143-7156.
    3. Broz P, Ben-Haim N, Grzelakowski M, et al. Inhibition of macrophage phagocytotic activity by a receptor-targeted polymer vesicle-based drug delivery formulation of pravastatin [J]. Journal of Cardiovascular Pharmacology,2008,51(3):246-252.
    4. Zhu H S, Geng Q R, Chen W Q, et al. Antibacterial high-genus polymer vesicle as an "armed" drug carrier [J]. Journal of Materials Chemistry B,2013,1(40):5496-5504.
    5. Kodger T E, Lynch M L, Weaver M R. Dynamics of polymer-induced gel formation in vesicle mixtures. [J]. Abstracts of Papers of the American Chemical Society,2005,229(U661-U661.
    6. Caria A, Regev O, Khan A. Surfactant-polymer interactions:Phase diagram and fusion of vesicle in the didodecyldimethylammonium bromide-poly(ethyleneoxide)-water system [J]. Journal of Colloid and Interface Science,1998,200(1):19-30.
    7. Stauch O, Uhlmann T, Frohlich M, et al. Mimicking a cytoskeleton by coupling poly(N-isopropylacrylamide) to the inner leaflet of liposomal membranes:Effects of photopolymerization on vesicle shape and polymer architecture [J]. Biomacromolecules,2002,3(2):324-332.
    8. Yan B, Tong X, Ayotte P, et al. Light-responsive block copolymer vesicles based on a photo-softening effect [J]. Soft Matter,2011,7(21):10001-10009.
    9. Xiao W j, Guo K k. Shapes of vesicle encapsulating two aqueous phases [J]. Soft Matter,2013,
    10. Han K, Su W, Zhong M, et al. Reversible Photocontrolled Swelling-Shrinking Behavior of Micron Vesicles Self-Assembled from Azopyridine-Containing Diblock Copolymer [J]. Macromolecular Rapid Communications,2008,29(23):1866-1870.
    11. Du J, O'Reilly R K. Advances and challenges in smart and functional polymer vesicles [J]. Soft Matter,2009,5(19):3544-3561.
    12. Yan B, Han D, Boissiere O, et al. Manipulation of block copolymer vesicles using CO2: dissociation or "breathing" [J]. Soft Matter,2013,9(6):2011-2016.
    13. Yin Y, Xu S, Chang D, et al. One-pot synthesis of biopolymeric hollow nanospheres by photocrosslinking [J]. Chem Commun,2009,46(43):8222-8224.
    14. Haro M, Ross D J, Oriol L, et al. Spectroscopic characterization and Langmuir-Blodgett films of a novel azopolymer material [J]. Langmuir,2007,23(4):1804-1809.
    15. Eastoe J, Dominguez M S, Wyatt P, et al. Properties of a stilbene-containing gemini photosurfactant:Light-triggered changes in surface tension and aggregation [J]. Langmuir,2002,18(21): 7837-7844.
    16. Mansfeld F M, Feng G Q, Otto S. Photo-induced molecular-recognition-mediated adhesion of giant vesicles [J]. Organic & Biomolecular Chemistry,2009,7(20):4289-4295.
    17. Lacey D, Beattie H, Mitchell G, et al. Orientation effects in monodomain nematic liquid crystalline polysiloxane elastomers [J]. Journal of Materials Chemistry,1998,8(1):53-60.
    18. Li Y, Lokitz B S, McCormick C L. Thermally responsive vesicles and their structural "locking" through polyelectrolyte complex formation [J]. Angewandte Chemie International Edition,2006,45(35): 5792-5795.
    19. Du J, Tang Y, Lewis A L, et al. pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer [J]. Journal of the American Chemical Society,2005,127(51):17982-17983.
    20. Nardin C, Hirt T, Leukel J, et al. Polymerized ABA triblock copolymer vesicles [J]. Langmuir, 2000,16(3):1035-1041.
    21. Su W, Luo Y, Yan Q, et al. Photoinduced Fusion of Micro-Vesicles Self- Assembled from Azobenzene-Containing Amphiphilic Diblock Copolymers [J]. Macromolecular Rapid Communications,2007,28(11):1251-1256.
    22. Moon J J, Suh H, Bershteyn A, et al. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses [J]. Nature materials,2011,10(3):243-251.
    23. Discher B M, Bermudez H, Hammer D A, et al. Cross-linked polymersome membranes:vesicles with broadly adjustable properties [J]. The Journal of Physical Chemistry B,2002,106(11):2848-2854.
    24. Klionsky D J, Abdalla F C, Abeliovich H, et al. Guidelines for the use and interpretation of assays for monitoring autophagy [J]. Autophagy,2012,8(4):445-544.
    25. Tawa K, Kamada K, Sakaguchi T, et al. Local environment dependence of photoinduced anisotropy observed in azo-dye-doped polymer films [J]. Polymer,2000,41(9):3235-3242.
    26. Marquestaut N, Martin A, Talaga D, et al. Raman Enhancement of Azobenzene Monolayers on Substrates Prepared by Langmuir-Blodgett Deposition and Electron-Beam Lithography Techniques [J]. Langmuir,2008,24(19):11313-11321.
    27. Su W, Luo Y H, Yan Q, et al. Photoinduced fusion of micro-vesicles self-assembled from azobenzene-containing amphiphilic diblock copolymers [J]. Macromolecular Rapid Communications, 2007,28(11):1251-1256.
    1. Christian D A, Tian A, Ellenbroek W G, et al. Spotted vesicles, striped micelles and Janus assemblies induced by ligand binding [J]. Nat Mater,2009,8(10):843-849.
    2. Hu J, Weikl T, Lipowsky R. Vesicles with multiple membrane domains [J]. Soft Matter,2011, 7(13):6092.
    3. del Barrio J, Oriol L, Sanchez C, et al. Self-Assembly of Linear-Dendritic Diblock Copolymers: From Nanofibers to Polymersomes [J]. Journal of the American Chemical Society,2010,132(11):3762-3769.
    4. Matsumura A, Tsuchiya K, Torigoe K, et al. Photochemical Control of Molecular Assembly Formation in a Catanionic Surfactant System [J]. Langmuir,2011,27(5):1610-1617.
    5. Koizumi S, Hasegawa H, Hashimoto T. Ordered Structure of Block Polymer Homopolymer Mixtures Vesicle Formation and Macrophase Separation [J]. Makromolekulare Chemie-Macromolecular Symposia,1992,62(75-91.
    6. Caria A, Regev O, Khan A. Surfactant-polymer interactions:Phase diagram and fusion of vesicle in the didodecyldimethylammonium bromide-poly(ethyleneoxide)-water system [J]. Journal of Colloid and Interface Science,1998,200(1):19-30.
    7. Park P J, Sung W. Polymer release out of a spherical vesicle through a pore [J]. Physical Review E,1998,57(1):730-734.
    8. Liu F, Eisenberg A. Preparation and pH Triggered Inversion of Vesicles from Poly (acrylic Acid)-b lock-Polystyrene-b lock-Poly (4-vinyl Pyridine) [J]. Journal of the American Chemical Society,2003, 125(49):15059-15064.
    9. Azzam T, Eisenberg A. Fully Collapsed (Kippah) Vesicles:Preparation and Characterization [J]. Langmuir,2010,26(13):10513-10523.
    10. Xue M S, Ma C, Craig T K, et al. The Janus-faced nature of the C2B domain is fundamental for synaptotagmin-1 function [J]. Nature Structural & Molecular Biology,2008,15(11):1160-1168.
    11. Buwalda R T, Jonker J M, Engberts J B F N. Aggregation of azo dyes with cationic amphiphiles at low concentrations in aqueous solution [J]. Langmuir,1999,15(4):1083-1089.
    12. Hamada T, Sato Y T, Yoshikawa K, et al. Reversible photoswitching in a cell-sized vesicle [J]. Langmuir,2005,21(17):7626-7628.
    13. Lin Y L, Chang H Y, Sheng Y J, et al. Photoresponsive Polymersomes Formed by Amphiphilic Linear-Dendritic Block Copolymers:Generation-Dependent Aggregation Behavior [J]. Macromolecules, 2012,45(17):7143-7156.
    14. Howse J R, Jones R A, Battaglia G, et al. Templated formation of giant polymer vesicles with controlled size distributions [J]. Nature materials,2009,8(6):507-511.
    15. Han M N, Okui Y, Hirade T. Light-responsive microstructures capable of pyrene monomer fluorescence switching [J]. Journal of Materials Chemistry C,2013,1(21):3448-3453.
    16. Li N, Wang X G. Hollow and Vesicle-Like Aggregates of an Amphiphilic Azo Random Copolymer Bearing Branched Azobenzene Side Chains [J]. Acta Polymerica Sinica,2013,4):549-555.
    17. Wang D R, Wang X G. Amphiphilic azo polymers:Molecular engineering, self-assembly and photoresponsive properties [J]. Progress in Polymer Science,2013,38(2):271-301.
    18. Arai N, Yasuoka K, Zeng X C. A vesicle cell under collision with a Janus or homogeneous nanoparticle:translocation dynamics and late-stage morphology [J]. Nanoscale,2013,5(19):9089-9100.
    19. Zhang G, Zhai X, Liu M, et al. Spacer-modulated aggregation of the cyanine dye on the vesicles of gemini amphiphiles [J]. Langmuir,2008,25(3):1366-1370.
    20. Kuiper J M, Engberts J B F N. H-aggregation of azobenzene-substituted amphiphiles in vesicular membranes [J]. Langmuir,2004,20(4):1152-1160.
    21. Mundargi R C, Babu V R, Rangaswamy V, et al. Nano/micro technologies for delivering macromolecular therapeutics using poly (d, 1-lactide-< i> co-glycolide) and its derivatives [J]. Journal of Controlled Release,2008,125(3):193-209.
    22. Xin F F, Zhang H C, Sun T, et al. Sensitive Vesicle System Based on Supramolecular Cyclodextrin Amphiphiles [J]. Progress in Chemistry,2012,24(2-3):414-422.
    23. Yan Q, Su W, Cheng Y L, et al. Luminescence and structure of Eu(DBM)(3)Phen-doped vesicles composed of amphiphilic PNIPAM-b-PAzoM [J]. Journal of Photochemistry and Photobiology a-Chemistry,2008,200(2-3):101-105.
    24. Hubbard F P, Abbott N L. Effect of light on self-assembly of aqueous mixtures of sodium dodecyl sulfate and a cationic, bolaform surfactant containing azobenzene [J]. Langmuir,2007,23(9): 4819-4829.
    1. Jung G H, Kim J K, Thinh P X, et al. Photo-controlled fabrication of honeycomb-patterned films in poly(N-vinylcarbazole/azobenzene) copolymer [J]. Journal of Photochemistry and Photobiology a-Chemistry,2013,272(6-17.
    2. Koshiba Y, Yamamoto M, Kinashi K, et al. Photo-induced alignment behavior of azobenzene compound in thin film [J]. Thin Solid Films,2009,518(2):805-809.
    3. Xu Z D, Zhang Y, Chen X F, et al. Photo-induced magnetic anisotropy of polymer film containing azobenzene organic free radical group [J]. Chinese Physics Letters,2003,20(2):240-242.
    4. Wu P F, Rao D V G L N. Optimization of photo-induced molecular reorientation in azobenzene polymer film [J]. Optical Materials,2003,21(1-3):295-299.
    5.王罗新,王晓工.偶氮苯顺反异构化机理研究进展[J].化学通报,2008,71(4):101-107.
    6. Xu Z D, Li Z, Ninulescu V, et al. Geometry control of photo-induced microstructures in an azobenzene polymer film [J]. Chinese Physics Letters,2001,18(3):379-381.
    7. Rutloh M, Zebger I, Hoffmann U, et al. Photo-induced orientation effects parallel and perpendicular to the polarization vector of the incident laser light observed in the same azobenzene-containing LC polymer film. [J]. Abstracts of Papers of the American Chemical Society,1998, 216(U127-U127.
    8. Jin H, Huang W, Zhu X, et al. Biocompatible or biodegradable hyperbranched polymers:from self-assembly to cytomimetic applications [J]. Chemical Society Reviews,2012,41(18):5986-5997.
    9. Su W, Luo Y H, Yan Q, et al. Photoinduced fusion of micro-vesicles self-assembled from azobenzene-containing amphiphilic diblock copolymers [J]. Macromolecular Rapid Communications, 2007,28(11):1251-1256.
    10. Su W, Zhao H, Wang Z, et al. Sphere to disk transformation of micro-particle composed of azobenzene-containing amphiphilic diblock copolymers under irradiation at 436 nm [J]. European Polymer Journal,2007,43(2):657-662.
    11. Jin H B, Zhou Y F, Huang W, et al. Polymerization-like Multilevel Hierarchical Self-Assembly of Polymer Vesicles into Macroscopic Superstructures with Controlled Complexity [J]. Langmuir,2010, 26(18):14512-14519.
    12. Li X, Yang H, Xu L M, et al. Janus Micelle Formation Induced by Protonation/Deprotonation of Poly(2-vinylpyridine)-block-Poly(ethylene oxide) Diblock Copolymers [J]. Macromolecular Chemistry and Physics,2010,211(3):297-302.
    13. Ting C L, Frischknecht A L. Activated pathways for the directed insertion of patterned nanoparticles into polymer membranes [J]. Soft Matter,2013,9(40):9615-9623.
    14. Sakai H, Imamura H, Kondo Y, et al. Reversible control of vesicle formation using electrochemical reaction [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2004, 232(2-3):221-228.
    15. Song X D, Perlstein J, Whitten D G. Supramolecular aggregates of azobenzene phospholipids and related compounds in bilayer assemblies and other microheterogeneous media:Structure, properties, and photoreactivity [J]. Journal of the American Chemical Society,1997,119(39):9144-9159.
    16. Koizumi S, Hasegawa H, Hashimoto T. Ordered Structure of Block Polymer Homopolymer Mixtures Vesicle Formation and Macrophase Separation [J]. Makromolekulare Chemie-Macromolecular Symposia,1992,62(75-91.
    17.王罗新;庹新林;许杰;李松年;王晓工.顺反异构化对偶氮类含能化合物感度的影响[J].物理化学学报,2008,24(10):1756-1760.
    18. Wang G, Tong X, Zhao Y. Preparation of Azobenzene-Containing Amphiphilic Diblock Copolymers for Light-Responsive Micellar Aggregates [J]. Macromolecules,2004,37(24):8911-8917.
    19. Jiang J, Tong X, Zhao Y. A new design for light-breakable polymer micelles [J]. Journal of the American Chemical Society,2005,127(23):8290-8291.
    20. Zhao Y. Photocontrollable block copolymer micelles:what can we control? [J]. J Mater Chem, 2009,19(28):4887-4895.
    21. Kim H K, Wang X S, Fujita Y, et al. Reversible Photo-Mechanical Switching Behavior of Azobenzene-Containing Semi-Interpenetrating Network under UV and Visible Light Irradiation [J]. Macromolecular Chemistry and Physics,2005,206(20):2106-2111.
    22. Barrett C J, Mamiya J-i, Yager K G, et al. Photo-mechanical effects in azobenzene-containing soft materials [J]. Soft Matter,2007,3(10):1249-1261.
    23. Liu R, Liu J-f, Zhou X-x, et al. Applications of Raman-based techniques to on-site and< i> in-vivo analysis [J]. TrAC Trends in Analytical Chemistry,2011,30(9):1462-1476.
    24. Walker R, Audorff H, Kador L, et al. Synthesis and Structure-Property Relations of a Series of Photochromic Molecular Glasses for Controlled and Efficient Formation of Surface Relief Nanostructures [J]. Advanced Functional Materials,2009,19(16):2630-2638.
    25. Bandara H D, Burdette S C. Photoisomerization in different classes of azobenzene [J]. Chemical Society Reviews,2012,41(5):1809-1825.
    26. Beharry A A, Wong L, Tropepe V, et al. Fluorescence imaging of azobenzene photoswitching in vivo [J]. Angewandte Chemie,2011,123(6):1361-1363.
    27. Diguet A, Yanagisawa M, Liu Y-J, et al. UV-induced bursting of cell-sized multicomponent lipid vesicles in a photosensitive surfactant solution [J]. Journal of the American Chemical Society,2012, 134(10):4898-4904.
    1. Jung M, Hubert D H W, Bomans P H H, et al. New vesicle-polymer hybrids:The parachute architecture [J]. Langmuir,1997,13(26):6877-6880.
    2. Meier W, Hotz J. Vesicle-templated polymer hollow spheres. [J]. Abstracts of Papers of the American Chemical Society,1998,215(U421-U421.
    3. Zhu H S, Geng Q R, Chen W Q, et al. Antibacterial high-genus polymer vesicle as an "armed" drug carrier [J]. Journal of Materials Chemistry B,2013,1(40):5496-5504.
    4. Tang Y C, Wang Z N, Xiao J W, et al. Studies of Phospholipid Vesicle Deposition/Transformation on a Polymer Surface by Dissipative Quartz Crystal Microbalance and Atomic Force Microscopy [J]. Journal of Physical Chemistry B,2009,113(45):14925-14933.
    5. Yan Q, Su W, Chen Y L, et al. Reversible modulation in luminescence intensity of a single vesicle composed of diblock azo-copolymer and tris(dibenzoylmethanate)(phenanthroline)europium(Ⅲ) [J]. Spectrochimica Acta Part a-MolecuIar and Biomolecular Spectroscopy,2009,71(5):1644-1647.
    6. Li N, Wang X G. Hollow and Vesicle-Like Aggregates of an Amphiphilic Azo Random Copolymer Bearing Branched Azobenzene Side Chains [J]. Acta Polymerica Sinica,2013,4):549-555.
    7. Kawakami M, Sekiguchi M, Sato K, et al. Erythropoietin receptor-mediated inhibition of exocytotic glutamate release confers neuroprotection during chemical ischemia [J]. Journal of Biological Chemistry,2001,276(42):39469-39475.
    8. Nicholson G M, Graudins A. Spiders of medical importance in the Asia-Pacific:Atracotoxin, latrotoxin and related spider neurotoxins [J]. Clinical and Experimental Pharmacology and Physiology, 2002,29(9):785-794.
    9. Sevink G J A, Zvelindovsky A V. Mesoscopic dynamics of complex vesicle formation:kinetic versus thermodynamic factors [J]. Molecular Simulation,2007,33(4-5):405-415.
    10. Li X, Yang H, Xu L M, et al. Janus Micelle Formation Induced by Protonation/Deprotonation of Poly(2-vinylpyridine)-block-Poly(ethylene oxide) Diblock Copolymers [J]. Macromolecular Chemistry and Physics,2010,211(3):297-302.
    11. Han Y Y, Cui J, Jiang W. Vesicle Structure and Formation of AB/BC Amphiphile Mixture Based on Hydrogen Bonding in a Selective Solvent:A Monte Carlo Study [J]. Journal of Physical Chemistry B,2012,116(30):9208-9214.
    12. Arai N, Yasuoka K, Zeng X C. A vesicle cell under collision with a Janus or homogeneous nanoparticle:translocation dynamics and late-stage morphology [J]. Nanoscale,2013,5(19):9089-9100.
    13. Li W, Gunton J D. Self-Assembly of Janus Ellipsoids Ⅱ:Janus Prolate Spheroids [J]. Langmuir, 2013,29(27):8517-8523.
    14. Willerich I, Grohn F. Thermodynamics of Photoresponsive Polyelectrolyte-Dye Assemblies with Irradiation Wavelength Triggered Particle Size [J]. Macromolecules,2011,44(11):4452-4461.
    15. Deng Y H, Li Y B, Wang X G. Colloidal sphere formation, H-aggregation, and photoresponsive properties of an amphiphilic random copolymer bearing branched azo side chains [J]. Macromolecules, 2006,39(19):6590-6598.
    16. Christian D A, Tian A W, Ellenbroek W G, et al. Spotted vesicles, striped micelles and Janus assemblies induced by ligand binding [J]. Nature materials,2009,8(10):843-849.
    17. Mukherjee S, Maxfield F R. Membrane domains [J]. Annu Rev Cell Dev Biol,2004,20(839-866.
    18. LoPresti C, Massignani M, Fernyhough C, et al. Controlling polymersome surface topology at the nanoscale by membrane confined polymer/polymer phase separation [J]. Acs Nano,2011,5(3):1775-1784.
    19. Zhao Y. Light-Responsive Block Copolymer Micelles [J]. Macromolecules,2012,45(9):3647-3657.
    20. Hu J L, Weikl T R, Lipowsky R. Vesicles with multiple membrane domains [J]. Soft Matter, 2011,7(13):6092-6102.
    21. Wilson D A, Nolte R J, van Hest J C. Autonomous movement of platinum-loaded stomatocytes [J]. Nature Chemistry,2012,4(4):268-274.
    22. Baumgart T, Hunt G, Farkas E R, et al. Fluorescence probe partitioning between Lo/Ld phases in lipid membranes [J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2007,1768(9):2182-2194.
    23. Shen G Y, Xue G S, Cai J, et al. Photo-induced reversible uniform to Janus shape change of vesicles composed of PNIPAM-b-PAzPy2 [J]. Soft Matter,2013,9(8):2512-2517.
    24. Chen K, Xue G, Shen G, et al. UV and visible light induced fission of azobenzene-containing polymer vesicles [J]. Rsc Advances,2013,3(22):8208-8210.
    25. Wu Y, Stefl M, Olzynska A, et al. Molecular rheometry:direct determination of viscosity in Lo and Ld lipid phases via fluorescence lifetime imaging [J]. Physical Chemistry Chemical Physics,2013,
    26. Zimmerman G, Chow L-Y, Paik U-J. The Photochemical Isomerization of Azobenzene [J]. Journal of the American Chemical Society,1958,80(14):3528-3531.
    27. Kumar G S, Neckers D. Photochemistry of azobenzene-containing polymers [J]. Chemical Reviews,1989,89(8):1915-1925.
    1. Yakovlev V V. Biochemical applications of nonlinear optical spectroscopy [M]. Boca Raton:CRC Press,2009.
    2. Lasch P, Kneipp J. Biomedical vibrational spectroscopy [M]. Hoboken, N.J.:Wiley-Interscience, 2008.
    3. Torimitsu K. Applications of raman spectroscopy in biology:from basic studies to disease diagnosis [M]. Washington, DC:IOS Press,2012.
    4. Lehn J. Supramolecular chemistry [J]. Science,1993,260(5115):1762-1763.
    5. Jones J L, Hoffman M. Determination of domain orientation in lead zirconate titanate ceramics by Raman spectroscopy [J]. Applied Physics Letters,2006,88(16):162903-162903-162903.
    6. Kobayashi H, Koumoto K, Jung J H, et al. Sol-gel phase transition induced by fiber-vesicle structural changes in sugar-based bolaamphiphiles [J]. Journal of the Chemical Society-Perkin Transactions 2,2002,11):1930-1936.
    7. Hamada T, Sato Y T, Yoshikawa K, et al. Reversible photoswitching in a cell-sized vesicle [J]. Langmuir,2005,21(17):7626-7628.
    8. Jog P V, Gin M S. A light-gated synthetic ion channel [J]. Organic Letters,2008,10(17):3693-3696.
    9. Liu Y C, Le Ny A L M, Schmidt J, et al. Photo-Assisted Gene Delivery Using Light-Responsive Catanionic Vesicles [J]. Langmuir,2009,25(10):5713-5724.
    10. Ran X, Wang H T, Zhang P, et al. Photo-induced fiber-vesicle morphological change in an organogel based on an azophenyl hydrazide derivative [J]. Soft Matter,2011,7(18):8561-8566.
    11. Loudon R. Theory of the first-order Raman effect in crystals [J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences,1963,275(1361):218-232.
    12. Anastassakis E, Pinczuk A, Burstein E, et al. Effect of static uniaxial stress on the Raman spectrum of silicon [J]. solid state Communications,1970,8(2):133-138.
    13. Balachandran U, Eror N. Raman spectra of titanium dioxide [J]. Journal of Solid State Chemistry, 1982,42(3):276-282.
    14. Trotter P. Azo dye tautomeric structures determined by Laser-Raman spectroscopy [J]. Applied Spectroscopy,1977,31(1):30-35.
    15. Sourisseau C. Polarization measurements in macro-and micro-Raman spectroscopies:molecular orientations in thin films and azo-dye containing polymer systems [J]. Chemical Reviews,2004,104(9): 3851-3892.
    16. Biswas N, Umapathy S. Structures, vibrational frequencies, and normal modes of substituted azo dyes:infrared, Raman, and density functional calculations [J]. The Journal of Physical Chemistry A, 2000,104(12):2734-2745.
    1. Nawaz S, Sanchez P, Bodensiek K, et al. Cell Visco-Elasticity Measured with AFM and Optical Trapping at Sub-Micrometer Deformations [J]. Plos One,2012,7(9):e45297.
    2. Hubbard F P, Abbott N L. A small angle neutron scattering study of the thicknesses of vesicle bilayers formed from mixtures of alkyl sulfates and cationic bolaform surfactants [J]. Soft Matter,2008, 4(11):2225-2231.
    3. Guo Q, Park S, Ma H. Microfluidic micropipette aspiration for measuring the deformability of single cells [J]. Lab on a Chip,2012,12(15):2687-2695.
    4. Simson D, Ziemann F, Strigl M, et al. Micropipet-based pico force transducer:in depth analysis and experimental verification [J]. Biophysical Journal,1998,74(4):2080-2088.
    5. Discher B M, Won Y-Y, Ege D S, et al. Polymersomes:tough vesicles made from diblock copolymers [J]. Science,1999,284(5417):1143-1146.
    6. Shojaei-Baghini E, Zheng Y, Sun Y. Automated Micropipette Aspiration of Single Cells [J]. Annals of Biomedical Engineering,2013,41(6):1208-1216.
    7. Das S, Tian A, Baumgart T. Mechanical stability of micropipet-aspirated giant vesicles with fluid phase coexistence [J]. The Journal of Physical Chemistry B,2008,112(37):11625-11630.
    8. Lu Y-B, Franze K, Seifert G, et al. Viscoelastic properties of individual glial cells and neurons in the CNS [J]. Proceedings of the National Academy of Sciences,2006,103(47):17759-17764.
    9. Tian A, Johnson C, Wang W, et al. Line tension at fluid membrane domain boundaries measured by micropipette aspiration [J]. Physical Review Letters,2007,98(20):208102.
    10. Needham D, Zhelev D. Use of Micropipet Manipulation Techniques to Measure the Properties of Giant Lipid Vesicles [M]. Perspectives in Supramolecular Chemistry. John Wiley & Sons, Ltd.2007: 102-147.
    11. Evans E, Needham D. Physical properties of surfactant bilayer membranes:thermal transitions, elasticity, rigidity, cohesion and colloidal interactions [J]. The Journal of Physical Chemistry,1987, 91(16):4219-4228.
    12. Henriksen J R, Ipsen J H. Measurement of membrane elasticity by micro-pipette aspiration [J]. The European Physical Journal E,2004,14(2):149-167.
    13. Zhao Y, Das S, Du Q. Adhesion of multicomponent vesicle membranes [J]. Physical Review E, 2010,81(4):1312-1316.