1. [地质云]滑坡
氮掺杂炭材料负载的纳米钯催化剂在催化加氢反应中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文中,我们分别采用了官能化含腈基离子液体和生物质原料氨基葡萄糖盐酸盐为碳源和氮源,合成了两种氮掺杂的介孔炭材料,然后通过操作简单、环境友好的超声辅助法在两种氮掺杂的炭材料上负载了分散均匀,尺寸均一的Pd纳米粒子,研究了这两种Pd催化剂在木质素模型分子的催化加氢和催化加氢脱氧反应中的活性。
     离子液体具有高沸点、良好的热稳定性以及低的蒸汽压,因而是制备炭基材料的优良前驱体。以官能化的含腈基离子液体N-丁基-3-甲基吡啶二氰胺盐(3-MBP-dca)同时作为碳源和氮源,以无序介孔硅球为模板,在氮气保护条件下,经过高温煅烧,得到了氮掺杂的无序介孔炭材料CN0.132,其含氮量达到12wt%,石墨化程度高,且比表面积可调。采用简易、方便的超声沉淀法成功的将Pd纳米粒子负载在CN0.132上制备得到Pd@CN0.132催化剂,由于载体材料中富电子的N原子的存在,催化剂中Pd0的含量占Pd的比例达到71%,在木质素模型分子香草醛的加氢脱氧反应中该催化剂表现出优异的催化效果,在温和的反应条件下,香草醛能够达到100%的转化率,产物2-甲氧基-4-甲基苯酚的选择性也达到100%。该催化剂亲水性强,能很好的分散在反应溶剂水中,这有利于底物分子与催化剂活性位点的接触,同时N原子和Pd之间的相互作用,有利于提高催化活性,防止Pd的氧化以及流失。因此,催化剂具有很好的稳定性和重复使用性,经过7次循环使用,催化剂的活性没有明显的损失。
     为了拓展Pd@CN0.132的应用范围,我们进一步考察了其在木质素模型分子苯酚选择性加氢制备环已酮反应中的催化活性。研究发现在温和的反应条件下(45℃,0.1MPa H2)以Pd@CN0.132为催化剂,苯酚转化率可达100%,环已酮的选择性可达99%,比目前常用的催化剂如Pd@C和Pd@mpg-C3N4和Pd@Al2O3等活性高出一倍以上。对取代苯酚类化合物,Pd@CN0.132也具有良好的催化效果,可以选择性加氢得到对应的取代环已酮。以不同阳离子的含腈基离子液体为前驱体类似的制备得到的一系列的氮掺杂的炭材料,其氮含量、孔径和孔体积等性质存在一定的差异,而且N的掺杂形式(各种N的含量)也有不同,导致载体材料上负载的Pd纳米粒子中Pd0的比例不同,在苯酚选择性加氢反应中的活性不同,虽然Pd纳米粒子的大小相近。
     考虑到离子液体的合成成本较高,我们以更加经济绿色的生物质原料一氨基葡萄糖盐酸盐为前驱体,以无序介孔硅球为模板,通过水热碳化法合成了氮掺杂的介孔炭材料(CNo.077),其含氮量在7wt%左右,比表面积达到324m2/g。采用超声沉淀法制备的Pd@CN0.077催化剂在香草醛的加氢脱氧及苯酚的选择性加氢反应中同样表现出优异的催化活性。芳香环的催化加氢一直是加氢反应的难点,为了进一步考察Pd@CN0.077催化剂的活性和适用范围,我们以苯甲酸加氢生成环已烷羧酸的反应为模型反应,系统地研究了Pd@CN0.077催化剂的催化效果。在85℃,0.1MPa氢气压力的温和条件下反应24小时,环已烷羧酸的收率达到100%,远高于使用Pd@C等其他催化剂的收率(10%-20%)。作为对比,以葡萄糖为前驱体合成的炭材料HTC负载Pd后催化苯甲酸加氢的收率仅有14%,充分说明了N掺杂对催化剂活性提升的作用。溶剂对该反应具有显著的影响,在水溶剂中苯甲酸加氢反应进行的最快,在乙醇、异丙醇、醋酸等其他质子性溶剂中反应速率较慢,而在二甲亚砜、N,N-二甲基甲酰胺、1,4-二氧六环和甲苯等非质子性极性溶剂中反应几乎不发生。推测可能的原因是苯甲酸与质子性溶剂形成氢键,降低反应活化能,提高反应速率,而非质子性极性溶剂会吸附在Pd活性位点上,抑制反应。此外我们还研究了氢气压力、反应温度等因素对反应的影响,反应为近似一级反应,反应的表观活化能为53.5kJ/mol。
     本论文中分别采用官能化的含腈基离子液体N-丁基-3-甲基吡啶二氰胺盐和生物质原料氨基葡萄糖盐酸盐为前驱体,分别以高温煅烧和水热碳化法,合成了两种不同类型的氮掺杂的介孔炭材料,然后采用超声沉淀法在这两种炭材料上负载Pd纳米粒子制备得到了两种不同类型的Pd催化剂。将其应用于木质素模型分子香草醛的加氢脱氧反应和苯酚以及苯甲酸的加氢反应中,表现出卓越的性能,揭示了氮掺杂的炭基材料在催化加氢领域具有广阔的应用前景。
In this paper, two kinds of N-doped mesoporous carbon materials were synthesized with different methods from different precursors, and then well-dispared, uniform Pd nanoparticles were loaded on these two kinds of carbon by a simple ultrasound assistant method. The catalytic activities of these two Pd catalysts in hydrogenation and hydrogenation of model moleculer of lignin were studied.
     Ionic liquid is of high boiling point, high thermal stability and low vapour pressure, so it is an excellent precursor of carbon-based materials. Herein, functionalized nitrile-containing ionic liquid, N-butyl-3-methylpyridium dicyanamide (3-MBP-dca) was taken as the carbon source as well as the nitrogen source, and silica spheres was taken as templates, after calcination in N2flow, N-doped carbon CN0.132was prepared. The nitrogen content of CN0.132is up to12wt%, the graphitization degree of CN0.132is deep, and the surface area of CN0.132is tunable. Pd nanoparticles were loaded on the CN0.132by ultrasound assistant and because the doping of electron-rich N atoms, the ratio of Pd0is as high as71%. The Pd@CN0.132exhibited excellent activity in hydrodeoxygenation of vanillin, model molecular of lignin, under mild reaction conditions, for example, under mild reaction conditions both conversion and selectivity can reach to100%. The catalyst is of good hydrophily, making it disperse well in reaction solvent water during the reaction process, which is better for the contacting of substrate molecule and catalytic active sites. Besides, the interaction between N atoms and Pd can prevent the Pd from being oxidized and leach, keep high stability and reusability, and in fact, catalyst activity of Pd@CN0.132did not change significantly after7recycles.
     To expand the application of Pd@CN0.132, we tested the activity of it in selective hydrogenation of phenol to cyclohexanone. It is found that under mild reaction conditions (eg.45℃,0.1MPa H2), the conversion of phenol over Pd@CN0.132can reach100%, with99%selectivity of cyclohexanone, which is one time higher than commercial Pd@C and others. For the selective hydrogenation of substituted phenols, Pd@CN0.132also exhibits good activity, and the substituted phenols can be selectively hydrogened to the corresponding substituted cyclohexanone. The N-doped carbon (CN-x) derived from ILs with different cations were prepared and textural properties including surface area, pore size and pore volume, as well as N species of them were found to be different. And the ratio of Pd0is different for different Pd@CN-x, which leads to the catalytic difference of Pd@CN-x in selective hydrogenation of phenol.
     Considering the cost of ionic liquid is high, inexpensive, harmless, and naturally available glucosamine hydrochloride was choosen as both carbon and nitrogen precursor to synthesize N-doped hydrotherm carbon (CN0.077) by hydrothermal method followed by a post synthesis heating treatment. N content of CN0.077is around7wt%and the surface area is324m2/g. Pd nanoparticles were then trapped in CN0.077by a simple ultrasonic-assisted deposition method, which served as high active and recyclable catalyst for the selective hydrogenation of phenol to cyclohexanone and hydrodeoxygenation of vanillin. Hydrogenation of aromatic nucleus is a chanllenge in hydrogenation, in order to investigate the activity and application range of Pd@CN0.077, hydrogenation of benzoic acid to cyclohexanecarboxylic acid was choosen as model reaction. Under mild reaction conditions (85℃,0.1MPa H2),100%yield of cyclohexanecarboxylic acid was obtained over Pd@CN0.077after24hours while the yield was only10%-20%with other catalysts including Pd@C, Pd@metal oxide and so on. For comparision, Pd@HTC synthesized with glucose precursor showed only14%yield, suggesting the N-doping can promote the activity significantly. Further study indicated that solvent has great effect on the hydrogenation, for instance, the highest100%conversion was obtained in water and in other protic solvent like ethanol, isopropanol or acetic acid, the conversion was lower, however in aprotic polar solvent including dimethyl sulfoxide, N, N-methylformamide,1,4-dioxane and toluene, the reaction can hardly undergo. In addition, the influences of H2pressure and reaction temperature were also investigated and pseudo-first-order was an acceptable approximation of the reaction kinetics. The apparent activation energy of the reaction was approximatly obtained as53.5kJ/mol.
     In summary, two kinds of N-doped mesoporous carbon were synthesized with functionalized nitrile-containing ionic liquid N-butyl-3-methylpyridium dicycnamide precursor and biomass-derived glucosamine hydro chloride precursor, respectively. The Pd@CN0.132and Pd@CN0.077prepared by ultrasound assistant exhibited superior performance in hydrodeoxygenation of vanillin and hydrogenation of phenol and benzoic acid, revealing great potential of.N-doped carbon in catalytic hydrogenation.
引文
[1]J. P. Paraknowitsch, A. Thomas, M. Antonietti, A detailed view on the polycondensation of ionic liquid monomers towards nitrogen doped carbon materials. J. Mater. Chem. 2010,20,6746-6758.
    [2]E. Kroke, M. Schwarz, Novel group 14 nitrides. Coord. Chem. Rev. 2004,248, 493-532.
    [3]E. C. Franklin, The ammono carbonic acids. J. Am. Chem. Soc. 1922,44, 486-509.
    [4]L. Pauling, J. H. Sturdivant, The structure of cyameluric acid, hydromelonic acid, and related substances. Proc. Natl. Acad. Sci. U. S. A. 1937,23, 615-620.
    [5]C. E. Redemann, H. J. Lucas, Some derivatives of cyameluric acid and probable structures of melam, melem and melon. J. Am. Chem. Soc. 1940,62, 842-846.
    [6]M. L. Cohen, Calculation of bulk moduli of diamond and zincblende solids. Phys. Rev. B 1985,32,7988-7991.
    [7]A. Y. Liu, M. L. Cohen, Predliction of new low compressibility solids. Science 1989,245,841-842.
    [8]D. M. Teter, R. J. Hemley, Low-compressibility carbon nitrides. Science 1996, 271,53-55.
    [9]A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. O. Muller, R. Schlogl, J. M. Carlsson, Graphitic carbon nitride materials:variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008,18, 4893-4908.
    [10]A. V. Semencha, L. N. Blinov, Theoretical prerequisites, problems, and practical approaches to the preparation of carbon nitride: A review. Glass Physics and Chemistry 2010,36,199-208.
    [11]S. Matsumoto, E. Q. Xie, F. Izumi, On the validity of the formation of crystalline carbon nitrides, C3N4. Diamond Relat. Mater. 1999,8,1175-1182.
    [12]M. Groenewolt, M. Antonietti, Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater. 2005,17,1789-1792.
    [13]T. Komatsu, T. Nakamura, Polycondensation/pyrolysis of tris-s-triazine derivatives leading to graphite-like carbon nitrides. J. Mater. Chem. 2001,11, 474-478.
    [14]F. Goettmann, A. Fischer, M. Antonietti, A. Thomas, Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction of benzene. Angew. Chem., Int. Ed. 2006, 45,4467-4471.
    [15]F. Goettmann, A. Thomas, M. Antonietti, Metal-free activation CO2 by mesoporous graphitic carbon nitride. Angew. Chem., Int. Ed. 2007,46, 2717-2720.
    [16]X. F. Chen, Y. S. Jun, K. Takanabe, K. Maeda, K. Domen, X. Z. Fu, M. Antonietti, X. C. Wang, Ordered mesoporous SBA-15 type graphitic carbon nitride:A semiconductor host structure for photocatalytic hydrogen evolution with visible light. Chem. Mater. 2009,21,4093-4095.
    [17]X. H. Li, J. S. Zhang, X. F. Chen, A. Fischer, A. Thomas, M. Antonietti, X. C. Wang, Condensed graphitic carbon nitride nanorods by nanoconfinement: Promotion of crystallinity on photocatalytic conversion. Chem. Mater.2011, 23,4344-4348.
    [18]J. H. Sun, J. S. Zhang, M. W. Zhang, M. Antonietti, X. Z. Fu, X. C. Wang, Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat. Commun. 2012,3.
    [19]Y. Wang, J. S. Zhang, X. C. Wang, M. Antonietti, H. R. Li, Boron- and fluorine-containing mesoporous carbon nitride polymers:Metal-free catalysts for cyclohexane oxidation. Angew. Chem., Int. Ed. 2010,49,3356-3359.
    [20]J. S. Zhang, G. G. Zhang, X. F. Chen, S. Lin, L. Mohlmann, G. Dolega, G. Lipner, M. Antonietti, S. Blechert, X. C. Wang, Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. Angew. Chem., Int. Ed. 2012,51,3183-3187.
    [21]J. S. Zhang, M. W. Zhang, G. G. Zhang, X. C. Wang, Synthesis of carbon nitride semiconductors in sulfur flux for water photoredox catalysis. ACS Catal. 2012,2,940-948.
    [22]Y. Wang, Y. Di, M. Antonietti, H. R. Li, X. F. Chen, X. C. Wang, Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids. Chem. Mater. 2010,22,5119-5121.
    [23]G. Liu, P. Niu, C. H. Sun, S. C. Smith, Z. G. Chen, G. Q. Lu, H. M. Cheng, Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 2010,132,11642-11648.
    [24]F. Z. Su, S. C. Mathew, G. Lipner, X. Z. Fu, M. Antonietti, S. Blechert, X. C. Wang, mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J. Am. Chem. Soc. 2010,132,16299-16301.
    [25]B. H. Long, Z. X. Ding, X. C. Wang, Carbon nitride for the selective oxidation of aromatic alcohols in water under visible light. Chemsuschem 2013,6,2024-2024.
    [26]Y. Chen, J. S. Zhang, M. W. Zhang, X. C. Wang, Molecular and textural engineering of conjugated carbon nitride catalysts for selective oxidation of alcohols with visible light. Chem. Sci 2013,4,3244-3248.
    [27]B. H. Min, M. B. Ansari, Y. H. Mo, S. E. Park, Mesoporous carbon nitride synthesized by nanocasting with urea/formaldehyde and metal-free catalytic oxidation of cyclic olefins. Catal. Today 2013,204, 156-163.
    [28]J. A. Singh, S. H. Overbury, N. J. Dudney, M. J. Li, G. M. Veith, Gold nanoparticles supported on carbon nitride: Influence of surface hydroxyls on low temperature carbon monoxide oxidation. ACS Catal. 2012,2,1138-1146.
    [29]Y. Wang, H. R. Li, J. Yao, X. C. Wang, M. Antonietti, Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C-H bond oxidation. Chem. Sci. 2011,2,446-450.
    [30]X. F. Chen, J. S. Zhang, X. Z. Fu, M. Antonietti, X. C. Wang, Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J. Am. Chem. Soc. 2009,131,11658-11659.
    [31]P. F. Zhang, Y. T. Gong, H. R. Li, Z. R. Chen, Y. Wang, Selective oxidation of benzene to phenol by FeCl3/mpg-C3N4 hybrids. RSC Adv. 2013,3, 5121-5126.
    [32]P. F. Zhang, Y. Wang, H. R. Li, M. Antonietti, Metal-free oxidation of sulfides by carbon nitride with visible light illumination at room temperature. Green Chem. 2012,14,1904-1908.
    [33]P. F. Zhang, Y. Wang, J. Yao, C. M. Wang, C. Yan, M. Antonietti, H. R. Li, Visible light-induced metal-free allylic oxidation utilizing a coupled photocatalytic system of g-C3N4 and N-hydroxy compounds. Adv. Synth. Catal. 2011,353,1447-1451.
    [34]S. W. Bian, Z. Ma, W. G. Song, Preparation and characterization of carbon nitride nanotubes and their applications as catalyst supporter. J. Phys. Chem. C 2009,113,8668-8672.
    [35]Y. Wang, J. Yao, H. R. Li, D. S. Su, M. Antonietti, Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. J. Am. Chem. Soc. 2011,133,2362-2365.
    [36]Y. Li, X. Xu, P. F. Zhang, Y. T. Gong, H. R. Li, Y. Wang, Highly selective Pd@mpg-C3N4 catalyst for phenol hydrogenation in aqueous phase. RSC Adv. 2013,3,10973-10982.
    [37]Y. T. Gong, P. F. Zhang, X. Xu, Y. Li, H. R. Li, Y. Wang, A novel catalyst Pd@ompg-C3N4 for highly chemoselective hydrogenation of quinoline under mild conditions. J. Catal. 2013,297,272-280.
    [38]X. J. Bai, T. Cao, C. B. Cao, Macroporous carbon nitride:synthesis, loading with metal nanoparticles and catalytic activity. Sci. Adv. Mater. 2012,4, 1007-1012.
    [39]Y. Li, Y. T. Gong, X. Xu, P. F. Zhang, H. R. Li, Y. Wang, A practical and benign synthesis of amines through Pd@mpg-C3N4 catalyzed reduction of nitrites. Catal. Commun. 2012,28,9-12.
    [40]D. S. Deng, Y. Yang, Y. T. Gong, Y. Li, X. Xu, Y. Wang, Palladium nanoparticles supported on mpg-C3N4 as active catalyst for semihydrogenation of phenylacetylene under mild conditions. Green Chem. 2013,15,2525-2531.
    [41]K. P. Gong, F. Du, Z. H. Xia, M. Durstock, L. M. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009,323,760-764.
    [42]L. Zhao, L. Z. Fan, M. Q. Zhou, H. Guan, S. Y. Qiao, M. Antonietti, M. M. Titirici, Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv. Mater. 2010,22,5202-5206.
    [43]M. M. Titirici, A. Thomas, M. Antonietti, Aminated hydrophilic ordered mesoporous carbons. J. Mater. Chem. 2007,17,3412-3418.
    [44]L. Q. Jiang, L. Gao, Modified carbon nanotubes:an effective way to selective attachment of gold nanoparticles. Carbon 2003,41,2923-2929.
    [45]F. Jaouen, M. Lefevre, J. P. Dodelet, M. Cai, Heat-treated Fe/N/C catalysts for O2 electroreduction: Are active sites hosted in micropores? J. Phys. Chem. B 2006,110, 5553-5558.
    [46]M. Lefevre, E. Proietti, F. Jaouen, J. P. Dodelet, Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009,324,71-74.
    [47]R. A. Sidik, A. B. Anderson, N. P. Subramanian, S. P. Kumaraguru, B. N. Popov, O2 reduction on graphite and nitrogen-doped graphite: Experiment and theory. J. Phys. Chem. B 2006, 110,1787-1793.
    [48]A. M. Cassell, J. A. Raymakers, J. Kong, H. J. Dai, Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 1999,103, 6484-6492.
    [49]X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009,324,1312-1314.
    [50]Y. Y. Shao, J. H. Sui, G. P. Yin, Y. Z. Gao, Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Appl. Catal, B 2008,79,89-99.
    [51]N. L. Pocard, D. C. Alsmeyer, R. L. McCreery, T. X. Neenan, M. R. Callstrom, Doped glassy-carbon-a new material for electrocatalysis. J. Mater. Chem.1992,2,771-784.
    [52]S. Y. Ye, A. K. Vijh, L. H. Dao, A new fuel cell electrocatalyst based on highly porous carbonized polyacrylonitrile foam with very low platinum loading. J. Electrochem. Soc. 1996,143, L1-L9.
    [53]M. C. Huang, H. S. Teng, Nitrogen-containing carbons from phenol-formaldehyde resins and their catalytic activity in NO reduction with NH3. Carbon 2003,41,951-957.
    [54]T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 1999,99,2071-2083.
    [55]J. P. Paraknowitsch, J. Zhang, D. S. Su, A. Thomas, M. Antonietti, Ionic liquids as precursors for nitrogen-doped graphitic carbon. Adv. Mater. 2010, 22,87-92.
    [56]J. S. Lee, X. Q. Wang, H. M. Luo, G. A. Baker, S. Dai, Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids. J. Am. Chem. Soc. 2009,131,4596-4597.
    [57]L. Zhao, N. Baccile, S. Gross, Y. J. Zhang, W. Wei, Y. H. Sun, M. Antonietti, M. M. Titirici, Sustainable nitrogen-doped carbonaceous materials from biomass derivatives. Carbon 2010,48,3778-3787.
    [58]C. Falco, M. Sevilla, R. J. White, R. Rothe, M. M. Titirici, Renewable nitrogen-doped hydrothermal carbons derived from microalgae. ChemSusChem 2012,5,1834-1840.
    [59]M. Sevilla, C. Falco, M. M. Titirici, A. B. Fuertes, High-performance CO2 sorbents from algae. RSC Adv. 2012,2,12792-12797.
    [60]M. M. Titirici, A. Thomas, M. Antonietti, Replication and coating of silica templates by hydrothermal carbonization. Adv. Funct. Mater. 2007,17, 1010-1018.
    [61]S. Kubo, I. Tan, R. J. White, M. Antonietti, M. M. Titirici, Template synthesis of carbonaceous tubular nano structures with tunable surface properties. Chem. Mater. 2010,22,6590-6597.
    [62]S. Kubo, R. J. White, N. Yoshizawa, M. Antonietti, M. M. Titirici, Ordered carbohydrate-derived porous carbons. Chem. Mater. 2011,23,4882-4885.
    [63]C. E. Chan-Thaw, A. Villa, L. Prati, A. Thomas, Triazine-based polymers as nanostructured supports for the liquid-phase oxidation of alcohols. Chem. Eur. J.2011,17,1052-1057.
    [64]C. E. Chan-Thaw, A. Villa, G. M. Veith, K. Kailasam, L. A. Adamczyk, R. R. Unocic, L. Prati, A. Thomas, Influence of periodic nitrogen functionality on the selective oxidation of alcohols. Chem. Asina J. 2012,7,387-393.
    [65]P. F. Zhang, Y. T. Gong, H. R. Li, Z. R. Chen, Y. Wang, Solvent-free aerobic oxidation of hydrocarbons and alcohols with Pd@N-doped carbon from glucose. Nat. Commun. 2013,4.
    [66]M. Soorholtz, R. J. White, T. Zimmermann, M. M. Titirici, M. Antonietti, R. Palkovits, F. Schuth, Direct methane oxidation over Pt-modified nitrogen-doped carbons. Chem. Commun. 2013,49,240-242.
    [67]J. Amadou, K. Chizari, M. Houlle, I. Janowska, O. Ersen, D. Begin, C. Pham-Huu, N-doped carbon nanotubes for liquid-phase C=C bond hydrogenation. Catal. Today 2008, 138,62-68.
    [68]Z. L. Li, J. H. Liu, C. G. Xia, F. W. Li, Nitrogen-functionalized ordered mesoporous carbons as multifunctional supports of ultrasmall Pd nanoparticles for hydrogenation of phenol. ACS Catal. 2013,3,2440-2448.
    [69]T. Kente, S. M. A. Dube, N. J. Coville, S. D. Mhlanga, Application of gallium nitride nanostructures and nitrogen doped carbon spheres as supports for the hydrogenation of cinnamaldehyde. J. Nanosci. Nanotechnol. 2013,13, 4990-4995.
    [70]许聚良,鄢文,吴大军,XRD分峰拟合法测定炭材料的石墨化度和结晶度. 武汉科技大学学报 2009,32,522-525.
    [71]U. R. Pillai, E. Sahle-Demessie, Selective oxidation of alcohols by molecular oxygen over a Pd/MgO catalyst in the absence of any additives. Green Chem. 2004, 6,161.
    [72]S. Crossley, J. Faria, M. Shen, D. E. Resasco, Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface. Science 2010, 327,68-72.
    [73]I. Dodgson, K. Griffin, G. Barberis, F. Pignataro, G. Tauszik, A low-cost phenol to cyclohexanone process. Chem. Ind. 1989,830-833.
    [74]T. F. S. Silva, G. S. Mishra, M. F. G. da Silva, R. Wanke, L. Martins, A. J. L. Pombeiro, Cu(Ⅱ) complexes bearing the 2,2,2-tris(1-pyrazolyl)ethanol or 2,2,2-tris(1-pyrazolyl)ethyl methanesulfonate scorpionates:X-Ray structural characterization and application in the mild catalytic peroxidative oxidation of cyclohexane. Dalton Trans. 2009,9207-9215.
    [75]U. Schuchardt, D. Cardoso, R. Sercheli, R. Pereira, R. S. de Cruz, M. C. Guerreiro, D. Mandelli, E. V. Spinace, E. L. Fires, Cyclohexane oxidation continues to be a challenge. Appl. Catal., A 2001,211,1-17.
    [76]S. G. Shore, E. Ding, C. Park, M. A. Keane, The application of{(DMF)10Yb2 [TM(CN)4]3}∞(TM= Ni, Pd) supported on silica to promote gas phase phenol hydrogenation. J. Mol. Catal. A:Chem.2004,212,291-300.
    [77]M. Chatterjee, H. Kawanami, M. Sato, A. Chatterjee, T. Yokoyama, T. Suzuki, Hydrogenation of phenol in supercritical carbon dioxide catalyzed by palladium supported on Al-MCM-41:A facile route for one-pot cyclohexanone formation. Adv. Synth. Catal. 2009,351,1912-1924.
    [78]V. Z. Fridman, A. A. Davydov, Dehydrogenation of cyclohexanol on copper-containing catalysts I. The influence of the oxidation state of copper on the activity of copper sites. J. Catal. 2000,195,20-30.
    [79]S. Watanabe, V. Arunajatesan, Influence of acid modification on selective phenol hydrogenation over Pd/activated carbon catalysts. Top. Catal. 2010, 53,1150-1152.
    [80]H. J. Wang, F. Y. Zhao, S. I. Fujita, M. Arai, Hydrogenation of phenol in ScCO2 over carbon nanofiber supported Rh catalyst. Catal. Commun. 2008,9, 362-368.
    [81]N. Mahata, V. Vishwanathan, Influence of palladium precursors on structural properties and phenol hydrogenation characteristics of supported palladium catalysts. J. Catal. 2000,196,262-270.
    [82]J. Morales, R. Hutcheson, C. Noradoun, I. F. Cheng, Hydrogenation of phenol by the Pd/Mg and Pd/Fe bimetallic systems under mild reaction conditions. Ind. Eng. Chem. Res. 2002,41,3071-3074.
    [83]C. Park, M. A. Keane, Catalyst support effects:gas-phase hydrogenation of phenol over palladium. J. Colloid Interface Sci. 2003,266,183-194.
    [84]G. Neri, A. M. Visco, A. Donato, C. Milone, M. Malentacchi, G. Gubitosa, Hydrogenation of phenol to cyclohexanone over palladium and alkali-doped palladium catalysts. Appl. Catal, A 1994,110,49-59.
    [85]S. G. Shore, E. R. Ding, C. Park, M. A. Keane, Vapor phase hydrogenation of phenol over silica supported Pd and Pd-Yb catalysts. Catal. Commun. 2002,3, 77-84.
    [86]P. Claus, H. Berndt, C. Mohr, J. Radnik, E. J. Shin, M. A. Keane, Pd/MgO: Catalyst characterization and phenol hydrogenation activity. J. Catal. 2000, 192,88-97.
    [87]E. J. Shin, M. A. Keane, Gas-phase hydrogenation/hydrogenolysis of phenol over supported nickel catalysts. Ind. Eng. Chem. Res.2000,39,883-892.
    [88]M. Ohde, H. Ohde, C. M. Wai, Catalytic hydrogenation of arenes with rhodium nanoparticles in a water-in-supercritical CO2 microemulsion. Chem. Commun. 2002,2388-2389.
    [89]Z. Q. Guo, L. Hu, H. H. Yu, X. Q. Cao, H. W. Gu, Controlled hydrogenation of aromatic compounds by platinum nanowire catalysts. RSC Adv. 2012,2, 3477-3480.
    [90]C. V. Rode, U. D. Joshi, O. Sato, M. Shirai, Catalytic ring hydrogenation of phenol under supercritical carbon dioxide. Chem. Commun. 2003,1960-1961.
    [91]P. Makowski, R. D. Cakan, M. Antonietti, F. Goettmann, M. M. Titirici, Selective partial hydrogenation of hydroxy aromatic derivatives with palladium nanoparticles supported on hydrophilic carbon. Chem. Commun. 2008,999-1001.
    [92]E. Diaz, A. F. Mohedano, L. Calvo, M. A. Gilarranz, J. A. Casas, J. J. Rodriguez, Hydrogenation of phenol in aqueous phase with palladium on activated carbon catalysts. Chem. Eng. J. 2007,131,65-71.
    [93]H. Z. Liu, T. Jiang, B. X. Han, S. G. Liang, Y. X. Zhou, Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst. Science 2009,326,1250-1252.
    [94]H. Y. Cheng, R. X. Liu, Q. Wang, C. Y. Wu, Y. C. Yu, F. Y. Zhao, Selective reduction of phenol derivatives to cyclohexanones in water under microwave irradiation. New J. Chem. 2012,36,1085-1090.
    [95]Z. Li, J. Liu, C. Xia, F. Li, Nitrogen-functionalized ordered mesoporous carbons as multifunctional supports of ultrasmall Pd nanoparticles for hydrogenation of phenol. ACS Catal. 2013,3,2440-2448.
    [96]X. Xu, Y. Li, Y. T. Gong, P. F. Zhang, H. R. Li, Y. Wang, Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade. J. Am. Chem. Soc. 2012,134, 16987-16990.
    [97]H. Shinkai, K. Toi, I. Kumashiro, Y. Seto, M. Fukuma, K. Dan, S. Toyoshima, N-acylphenylalanines and related compounds:a new class of oral hypoglycemic agents. J. Med. Chem. 1988,31,2092-2097.
    [98]H. Shinkai, M. Nishikawa, Y. Sato, K. Toi, I. Kumashiro, Y. Seto, M. Fukuma, K. Dan, S. Toyoshima, N-(cyclohexylcarbonyl)-D-phenylalanines and related compounds:a new class of oral hypoglycemic agents.2. J. Med. Chem. 1989, 32,1436-1441.
    [99]J. Zhao, M. W. Xue, Y. Huang, J. Y. Shen, Hydrogenation of dioctyl phthalate over supported Ni catalysts. Catal. Commun. 2011,16,30-34.
    [100]堵文斌,姚雪松,邻苯二甲酸二丁酯加氢生成邻环已烷二甲酸二丁酯的研究.PETROCHEMICAL TECHNOLOGY 2005,34,249-251.
    [101]D. G. Cheng, C. Y. Hou, F. Q. Chen, X. L. Zhan, Effect of manganese and potassium addition on CeO2-Al2O3 catalyst for hydrogenation of benzoic acid to benzaldehyde. Journal of Rare Earths 2009,27,723-727.
    [102]M. W. de Lange, J. G. van Ommen, L. Lefferts, Deoxygenation of benzoic acid on metal oxides 1. The selective pathway to benzaldehyde. Appl. Catal., A 2001,220,41-49.
    [103]D. Gaude, R. Legoaller, J. L. Luche, J. L. Pierre, Activation of reactions using polyethylene oxides.3. Reductions by sodium-potassium eutectics. Tetrahedron Lett. 1984,25,5897- 5898.
    [104]M. Maris, W. R. Huck, T. Mallat, A. Baiker, Palladium-catalyzed asymmetric hydrogenation of furan carboxylic acids. J. Catal. 2003,219, 52-58.
    [105]J. A. Anderson, A. Athawale, F. E. Imrie, F. M. McKenna, A. McCue, D. Molyneux, K. Power, M. Shand, R. P. K. Wells, Aqueous phase hydrogenation of substituted phenyls over carbon nanofibre and activated carbon supported Pd. J. Catal. 2010,270,9-15.
    [106]C. H. Yen, H. W. Lin, C. S. Tan, Hydrogenation of bisphenol A: Using a mesoporous silica based nano ruthenium catalyst Ru/MCM-41 and water as the solvent. Catal. Today 2011,174,121-126.
    [107]H.-W. Lin, C. H. Yen, C. -S. Tan, Aromatic hydrogenation of benzyl alcohol and its derivatives using compressed CO2/water as the solvent. Green Chem. 2012,14,682-687.
    [108]X. Yang, L. Du, S. J. Liao, Y. X. Li, H. Y. Song, High-performance gold-promoted palladium catalyst towards the hydrogenation of phenol with mesoporous hollow spheres as support. Catal. Commun. 2012,17,29-33.
    [109]H. A. Smith, D. M. Alderman, F. W. Nadig, The catalytic hydrogenation of the benzene nucleus.1. The hydrogenation of phenol-substituted aliphatic acids. J. Am. Chem. Soc. 1945,67,272-276.
    [110]T. Maegawa, A. Akashi, K. Yaguchi, Y. Iwasaki, M. Shigetsura, Y. Monguchi, H. Sajiki, Efficient and practical arene hydrogenation by heterogeneous catalysts under mild conditions. Chem. Eur. J. 2009,15, 6953-6963.
    [111]T. Maegawa, A. Akashi, H. Sajiki, A mild and facile method for complete hydrogenation of aromatic nuclei in water. Synlett 2006, 1440-1442.
    [112]H. J. Wang, F. Y. Zhao, Catalytic ring hydrogenation of benzoic acid with supported transition metal catalysts in scCO2. Int. J. Mol. Sci. 2007,8, 628-634.
    [113]G. Y. Bai, X. Wen, Z. Zhao, F. Li, H. X. Dong, M. D. Qiu, Chemoselective hydrogenation of benzoic acid over Ni-Zr-B-PEG(800) nanoscale amorphous alloy in water. Ind. Eng. Chem. Res. 2013,52,2266-2272.
    [114]J. Y. He, C. Zhao, J. A. Lercher, Impact of solvent for individual steps of phenol hydrodeoxygenation with Pd/C and HZSM-5 as catalysts. J. Catal. 2014,309,362-375.
    [115]H. J. Wan, A. Vitter, R. V. Chaudhari, B. Subramaniam, Kinetic investigations of unusual solvent effects during Ru/C catalyzed hydrogenation of model oxygenates. J. Catal. 2014,309,174-184.