1. [地质云]滑坡
电动助力车技术性能多参数检测系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动助力车在我国的发展正方兴未艾,对其技术性能的检测便显得尤其重要。本文是对基于智能检测技术的电动助力车主要技术性能检测系统的研究。
     在对智能检测系统的发展、基本结构及其特点探讨的基础上,提出了自适应检测方法的原理和特征。分析和确定了电动助力车主要性能的检测项目,并对车速、续行里程、载荷、蓄电池的放电电压和放电电流等被测项目的检测原理及实现方法进行了探讨。重点对车速的检测方法及其所用霍尔传感器进行了讨论和设计,提出了一种关于转速计算的自适应检测方法。同时针对本系统多个参数需要同时进行检测的特点,将多个参数的测量模拟信号通过信号采集系统全部变换为频率进行数据处理,系统的硬什方面有比较统一的模式,软件方面有统一的计算流程,能实现单机的多功能设计,最终形成了多参数的统一智能检测方法。
     在以上智能检测技术的基础上,将各种电量和非电量集中在一个检测系统中,以8031单片机为下位机,PC机为上位机进行检测。整个检测系统进行模块化设计,主要包括信号采集子系统、8031单片机子系统、显示和打印子系统以及数据通信子系统等几大模块。利用智能化系统强大的软件功能对系统进行控制并实现系统的功能要求。此外,还对系统的检测结果的误差进行了分析,并提出了解决方法,同时给出了系统抗干扰的软硬件措施。
     通过对电动助力车主要技术性能的智能化检测系统的研究,可以逐步探索出多参数智能检测的科学有效的途径和方法,促进智能检测技术的发展,从而提高检测系统的精度和准确度。
Electro-hybrid bicycle is in the ascendant in China. It is obvi6usly important to measure the technical performance of the bicycle. This paper presents the research on primary technical performance of electro-hybrid bicycle based on intelligence measuring technology.
    The principle and character of adaptive measuring method are proposed based on discussing the development, structure and characteristic of intelligence measuring system. The testing principle and the performing method of testing items such as speed, range, load, discharge voltage and current for electro-hybrid bicycle are described based on deciding the items. Discussion and design of the method and Hall sensor of speed test are keystone, and an adaptive method of rotation calculation is presented. Meanwhile several parameters are measured at one time in the system, therefore the analog signals can be converted frequency signals by making use of signal acquisition system. The uniform pattern in the hardware and uniform How in the software can implement the multi-function design for single machine. Ultimately the uniform multi-parameter intelligent measuring method comes into being.
    The electric quantity and non-electric quantity are measured in an intelligent testing system in which 8031 single-chip microcomputer is lower machine and PC is upper machine based on the above measuring method. The measuring system contains several modules such as signal acquisition subsystem, 8031 SCM subsystem, display and print subsystem, data traffic subsystem. Making use of mighty software function can control the system and implement the functional requirements of the system. In addition, error of the result is analyzed, and the resolving ways are put forward. Finally this paper presented the anti-interference measure for the system.
    Researching the intelligent measuring system for primary technical performance of electro-hybrid bicycle can explore more effective and more scientific methods for the multi-parameter intelligent measurement. This can promote the development of measuring technology. Consequently precision and exactness of the system are improved.
引文
[1] 孙晓民,齐国光.电动自行车关键技术研究及总体设计,’97中国电动车研究与开发.海洋出版社,1997
    [2] 秦金妹,葛熙英.电动自行车用密封铅酸蓄电池研究.中国第二十二届化学与物理电源学术年会,1996
    [3] 黄榕清,李权民,廖权来.电动摩托车设计及实验研究,’97中国电动车研究与开发.海洋出版社,1997
    [4] 商国华.对超轻型电动车几个技术问题的探讨.摩托车技术,1999,4
    [5] 倪川.智能型电动助力车模糊控制方案,’97中国电动车研究与开发.海洋出版社,1997
    [6] 陈新安,周长进.日本电动助行车型式认证标准及检测方法的介绍.摩托车技术,1999,3
    [7] 李心竹,寇峻舟.单片机在转速测速器中的应用.电器开关,2000,4
    [8] 张文栋,马宝华,祖静.智能测试系统基本特征及其组成.测试技术,1994,8(2)
    [9] 张万峰,孙力,付承伦.无刷直流电动机新型位置与速度传感器的应用及分析.2000年微特电机发展展望学术报告会论文集,1994
    [10] 齐秋群,刚砺韬.Motorola/Intel单片机程序设计与应用.机械工业出版社,1998,12
    [11] 瞿雷,徐伯勤,单片机及FPGA技术在智能测试仪表中的应用.1996年全国单片微机学术交流会暨多国单片微机展示会论文集,1996
    [12] 滕召胜等编著.智能检测系统与数据融合.机械工业出版社,2000,1
    [13] 孙焕根主编.电子测量与智能仪器.浙江大学出版社,1992,3
    [14] 马明建.数据采集与处理技术.西安交通大学出版社,1998
    [15] 王俊省.微计算机检测技术及应用,电子工业出版社,1996,1
    [16] 罗文广.微机测控系统中几种抗干扰技术.测控技术,1997,16(6)
    [17] 胡广书编著.数字信号处理—理论、算法与实现.清华大学出版社,1997,8
    [18] 王鸿钰,董奇.自动测量仪器和测量系统的发展综述.计算机自动测量与控制,2000,8(4)
    [19] 张国雄,金篆芷.测控电路.机械工业出版社,2001,1
    [20] 李华主编.MCS-51系列单片机实用接口技术.北京航空航天大学出版社,1993,8
    [21] 施妙根,顾丽珍.科学和工程计算基础.清华大学出版社,1999,8
    [22] 王幸之,王雷.单片机应用系统抗干扰技术.北京航空航天大学出版社,1999,12
    [23] 齐长远,康雪艳,王爱民.一种非接触高精度的转速测量方法.微型机与应用,2000,12
    [24] 吴霞.许华.李青.用89C51单片机实现的一种新型低速转速测量方法.中国计量学院学报.2000,1
    [25] 季建华.都志杰.智能仪表原理、设计与调试.华东理工大学出版社,1995,1
    
    
    [26] 张积东,孙积第.单片机51/98开发与应用.电子工业出版社,1994
    [27] 齐长远,王爱明.一种非接触高精度的转速测量方法.微型机与应用,2000,12
    [28] 李清泉.自适应控制系统理论设计与应用.科学出版社,1990
    [29] 郑叔芳.自适应测试系统的体系结构与性能指标.南航科技报告,1992
    [30] 黄俊钦.静、动态数学模型的实用建模方法.机械工业出版社,1988
    [31] Barney. G.C. Instruction to Instrumentation and Measurements. John Wiley & Sons, New York, 1996
    [32] Ede C. YEN Vehicle Speed Estimation by Wheel Speed Measurements. IEEE July 1989
    [33] V.N.Naboko, S.Marinov. Multicanal Data Acquisition System for Lidar Measurements. SPIE Vol.1714 Lidar for Remote Sensing, 1992
    [34] S.Marinov. About the Using of GPIB in Microcomputer Controlled Data Acquisition Systems for Lidar Measurements. SPIE Vol.1714 Lidar for Remote Sensing, 1992
    [35] A.P.Nina. The Use of Data Acquisition and Stimulus Systems Based on Industrial Computers in the Automotive Industry. Mobility Technology Conference & Exhibit SAE Brasil 92, 1992
    [36] N.K.Swain, James A.Anderson, A.M.Hasanul Basher. Intelligent Sensor Integrated System. SPIE Vol. 3374, April 1998
    [37] Harry Printz, Paul Scherer. Automatic Mapping of Large Signal Processing Systems to a Parallel Machine. SPIE Vol. 1154 Real-Time Signal Processing Ⅻ, 1989
    [38] Diego Bellan, Arnaldo Brandolini. Quantization Effects in Sampling Processes. IEEE Instrumentation and Measurement Technology Conference, 1996
    [39] J.Bojkovski. T.Repar. A Measurement Communication System. IEEE Instrumentation and Measurement Technology Conference. 1996
    [40] Defatta, David J., Joseph G. Lucas, William S. Hodgkiss. Digital Signal Processing: A System Design Approach. New York: John Wiley, 1988
    [41] Lin, K.Trends of Digital Signal Processing in Automotive. International Congress on Transportation Electronic (CONVERGENCE 8), October 1988
    [42] Gyula Simon. Generalization of the Frequency Sampling Method. IEEE Instrumentation and Measurement Technology Conference, 1996
    [43] C. Perello. N. Poch.J. Millan. An Open System To Interface IEEE-488 Measurement Devices Designed in a Microelectronics Environment. IEEE Instrumentation and Measurement Technology Conference. 1996
    [44] Th. Laopoulos, Ch. Papageorgiou. Microcontroller-based Measurement of Angular Position, Velocity and Acceleration. IEEE Instrumentation and Measurement Technology Conference, 1996
    
    
    [45] FH Irons, DM Hummels, CA Zoldi. Ana!og-to-Digital Converter Error Diagnosis. IEEE Instrumentation and Measurement Technology Conference, 1996
    [46] Steven W. Peters, J.C.Schrock. Computer Controlled Data Acquisition and Testing System. Proceedings of the 1984 SEM Fall Conference, Computer-aided Testing and Model Analysis, 1984
    [47] Kersey. A.D., A.Dandridge. Application of Fiber-optic Sensors. IEEE Trans. Components, Hybrids Manu. Technol., 1990
    [48] C. F. Christiansen, E. Tacconi. Digital Measurement of Angular Velocity for Speed Control. IEEE Transactions on Industrial Electronics. Vol.36, Feb. 1989
    [49] G. P. Hancke, C. F. T. Viljoen. The Microprocessor Measurement of Low Values of Rotational Speed and Acceleration. IEEE Transactions on Instrumentation and Measurement, Vol.39, Dec. 1990
    [50] R. Bonert. Design of a High Performance Tachometer with a Microcontroller. IEEE Transactions on Instrumentation and Measurement, Vol.38, Dec. 1989
    [51] S. i. Ovaska. Improving the Velcocity Sensing Resolution of Pulse Encoders by FIR Prediction. IEEE Transactions on Instrumentation and Measurement, vol. 40, June 1991
    [52] M. Prokin. Dynamic Response of a Frequency Measuring System. IEEE Transactions on Instrumentation and Measurement, vol. 41, June 1992