1. [地质云]滑坡
新型聚芳醚酮稀土配合物的制备及其荧光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土聚合物兼具稀土离子独特的发光特性和聚合物易加工成型等优点,在发光显示、信息通讯、太阳能转换等领域具有广泛的应用前景,因此,新型稀土聚合物材料的设计及其性能研究具有重要的理论研究价值和实际意义。本文设计并合成了多种新型聚芳醚酮稀土配合物,系统地研究了材料的结构与性能之间的关系,以期获得综合性能优异并具有实际应用价值的一类新的稀土聚合物功能材料。
     首先采用溶液亲核缩聚反应合成了三种具有不同烷基取代基且含羧基侧基的聚芳醚酮(PEKs,包括PEK-1、PEK-2和PEK-3),其数均分子量(%)分别为66.4、46.1和45.6 kg/mol。这些聚合物均具有无定型结构,在室温下能够很好地溶解于DMSO、DMF和THF等溶剂中,其玻璃化转变温度(%)均高于210℃,热失重5%时的温度(T5)均高于402℃。
     分别以制得的PEK-1、PEK-2和PEK-3作为高分子配体,1,10-邻菲罗啉(Phen)为小分子协同配体,并分别以铕(Eu3+)、铽(Tb3+)、镝(Dy3+)、钐(Sm3+)为中心配位离子,制备了一系列具有可见荧光发射的新型稀土配位聚合物(PEK-RE3+-Phens,PEK=PEK-1、PEK-2、PEK-3:RE3+=Eu3+、Tb3+、Dy3+、Sm3+)。稀土离子与聚合物羧基侧基的配位反应使其均匀分布于聚合物基体材料中。PEK-RE3+-Phens表现出较好的溶解性,可溶于DMSO、DMF和NMP等溶剂,且通过旋涂或浇铸的方法可制得均一光滑的薄膜。PEK-RE3+-Phens在紫外光激发下能够分别发射出各自稀土离子的特征荧光,且高分子配体和小分子配体的协同配位使其荧光发射强度远高于相应的配位聚合物(PEK-RE3+s)和小分子配合物(RE3+-Phens)。与PEK-2和PEK-3相比,以具有最多烷基取代基的PEK-1为高分子配体的配合物的荧光强度更大。相对于小分子配合物RE3+-Phens,PEK-RE3+-Phens具有更长的荧光寿命,其中PEK-1-Eu3+-Phen和PEK-1-Tb3+-Phen的荧光寿命分别为1130和960μs。PEK-1-Eu3+-Phen和PEK-1-Tb3+-Phen的粉末、DMF溶液及薄膜样品在365 nm紫外灯激发下均能够分别发射出鲜艳的红光和绿光。
     利用PEK-1上的活性羧基侧基,通过酰氯化、酰胺化反应,将共轭刚性结构的Phen直接引入到了PEK-1的大分子链上,制备出了酰胺化聚芳醚酮(PPEK),其表现出较好的溶解性和比PEK-1更好的热稳定性。以制得的PPEK为高分子配体,Phen作为协同配体,制得了一类新的发射可见荧光的稀土配位聚合物(PPEK-RE3+-Phens,RE3+=Eu3+、Tb3+、Dy3+、Sm3+)。在该配位聚合物体系中,PPEK通过大分子链上引入的Phen基团的N原子与RE3+发生了配位反应。PPEK-RE3+-Phens具有较好的溶解性和成膜性。PPEK-Eu3+-Phen、PPEK-Tb3+-Phen、PPEK-Dy3+-Phen和PPEK-Sm3+-Phen在紫外光激发下可分别发射出Eu3+、Tb3+、Dy3+和Sm3+的特征荧光。
     为了提高稀土配位聚合物的荧光强度,在PEK-1-Eu3+-Phen和PEK-1-Tb3+-Phen体系中分别引入镧(La3+)和铈(Ce3+),制得了铕镧共配位聚合物(PEK-1-Eu0.53+Lax3+-Phens)和铽铈共配位聚合物(PEK-1-Tb0.53+Cex3+-Phens)。荧光分析结果证实,La3+和Ce3+的引入可分别显著提高相应配位聚合物的荧光强度。此外,还研究了铕铽共配位聚合物(PEK-1-Eu3+xTb3+l-X-Phens)的荧光性质,并结合CIE1931xy色度图进行了分析。结果表明,通过调节PEK-1-Eux3+Tb1-x3+-Phens体系中Eu3+和Tb3+的含量,能够获得可发射红色和绿色之间包括黄色在内的多种混合色的稀土配位聚合物荧光材料。
     以铒(Er3+)、钕(Nd3+)和镱(Yb3+)为中心配位离子,PEK-1为高分子配体,并选用8-羟基喹啉(HQ)为协同配体,制备了一系列具有近红外荧光发射的新型稀土配位聚合物(PEK-1-RE3+-HQs,RE3+=Er3+、Nd3+、Yb3+)。在这些配位聚合物体系中,高分子配体PEK-1和小分子配体HQ同时与RE3+发生了配位反应。PEK-1-Er3+-HQ热分解的两个阶段分别对应于HQ喹啉环的断裂和PEK-1大分子链的断裂。PEK-1-RE3+-HQs可溶于DMF、DMAc和DMSO等常用的有机溶剂,且易于成膜。荧光测试结果表明,PEK-1-Er3+-HQ、PEK-1-Nd3+-HQ和PEK-1-Yb3+-HQ在近红外区具有较强的荧光发射,最大发射波长分别位于1527、1060和978 nm处。PEK-1和HQ的协同配位作用可有效地提高这些配位聚合物的发射强度。
Rare earth coordination polymers possess both unique luminescence properties of rare earth ions and excellent processability of polymer materials, which endow them potential applications in many fields such as light-emitting display, optics communications, solar-energy conversion systems, and so on. Therefore, the study on synthesis and properties of new rare earth coordination polymers is of theoretical and practical significance. In this work, using polyaryletherketones as macromolecular ligands, a series of novel rare earth complexes with excellent fluorescence properties were designed and synthesized. The relationship between the structures and properties of these materials were discussed systematically in order to obtain new rare earth functional polymeric materials with promising applications.
     Three carboxyl-containing polyaryletherketones with different alkyl substitutents (PEKs=PEK-1, PEK-2, PEK-3) were prepared via solution nucleophilic polycondensation reaction. The number-average molecular weights (Mn) of PEK-1, PEK-2 and PEK-3 were 66.4,46.1 and 45.6 kg/mol, respectively. PEKs all displayed the amorphous structures, and could easily dissolve in solvents such as DMSO, DMF, THF at the room tempreture. The glass transition temperatures (Tg) and 5% thermal decomposition temperatures (T5) were over 210 and 402℃, respectively.
     Using PEK-1, PEK-2 and PEK-3 as macromolecular ligand, respectively, and 1,10-phenanthroline (Phen) as synergistic ligand, a series of novel rare earth coordination polymers (PEK-RE3+-Phens, PEK=PEK-1, PEK-2, PEK-3, RE3+=Eu3+, Tb3+, Dy3+, Sm3+) with visible fluorescence emission were prepared. The rare earth ions could disperse homogeneously in the polymer matrix due to the formation of coordination bonds between rare earth ions and the carboxyl groups on the polymer backbone. PEK-RE3+-Phens showed good solubility and could dissolve in DMF, DMAc, NMP, and the uniform and smooth thin films could be obtained easily by spin-coating or solution-casting method. PEK-RE3+-Phens exhibited the characteristic fluorescence of the corresponding rare earth ions under UV excitation. Furthermore, PEK-RE3+-Phens showed the much higher intensities than the corresponding PEK-RE3+s and RE3+-Phens complexes, attributed to the synergistic effects of macromolecular ligand and small molecular ligand. Compared with PEK-2 and PEK-3, PEK-1 owned the most alkyl substituents, which was responsible for the higher fluorescence intensities of PEK-1-RE3+-Phens than those of PEK-2-RE3+-Phens and PEK-3-RE3+-Phens. PEK-RE3+-Phens showed the longer fluorescence lifetimes than RE3+-Phens. The fluorescence lifetimes of PEK-1-Eu3+-Phen and PEK-1-Tb3+-Phen were as long as 1130 and 960μs, respectively. The powder, DMF solution and film samples of PEK-1-Eu3+-Phen and PEK-1-Tb3+-Phen could emit bright red and green light under the UV lamp of 365 nm, respectively.
     By the chloroformylation and amidation reactions, Phen with conjugate and rigid structure was attached onto the PEK-1 backbone to yield 1,10-phenanthroline-functionalized polyaryletherketone (PPEK), which showed good solubility and owned the higher thermal stability than PEK-1. Subsequently, using PPEK as macromolecular ligand and Phen as synergistic ligand, a series of novel rare earth coordination polymers (PPEK-RE3+-Phens, RE3+= Eu3+, Tb3+, Sm3+, Dy3+) with visible fluorescence emission were prepared. PPEK participated in the cooridnation reaction with rare earth ions by the nitrogen atoms of Phen groups attached on PEK-1 chain. PPEK-RE3+-Phens exhibited good solubility and film-formation. PPEK-Eu3+-Phen, PPEK-Tb3+-Phen, PPEK-Dy3+-Phen and PPEK-Sm3+-Phen could emit the characteristic fluorescence of the corresponding rare earth ions under UV excitation.
     In order to enhance the fluorescece intensities of the rare earth coordination polymers, La3+and Ce3+were introduced into the PEK-1-Eu3+-Phen and PEK-1-Tb3+-Phen systems, respectively, and PEK-1-Eu3+0.5La3+x-Phens and PEK-1-Tb3+0.5Ce3+x-Phens were prepared. The fluorescence analysis confirmed that the introduction of La3+and Ce3+could obviously improve the emission intensities of PEK-1-Eu3+-Phen and PEK-1-Tb3+-Phen, respectively. In addition, PEK-1-Eu3+xTb3+1-x-Phens were prepared and the fluorescence properties were investigated by their fluorescence spectra, as well as the CIE1931xy chromaticity diagram. The results showed that, the rare earth coordination polymers emitting various combinations of red and green color, including yellow color, could be obtained through adjusting the contents of Eu3+and Tb3+in the PEK-1-Eu3+xTb3+1-x-Phen systems.
     Using Er3+, Nd3+or Yb3+as the central ions, PEK-1 as macromolecular ligand and 8-hydroxyquinoline (HQ) as synergistic ligand, a series of novel rare earth coordination polymers (PEK-1-RE3+-HQs, RE3+= Er3+, Nd3+, Yb3+) with near-infrared fluorescence emission were prepared, in which rare earth ions were coordinated simultaneously with PEK-1 and HQ. The two steps of thermal decomposition of PEK-1-Er3+-HQ were attributed to the cleavage of quinoline ring of HQ and macromolecular chains of PEK-I, respectively. PEK-1-RE3+-HQs could dissolve in the common solvents, such as DMF, DMAc and DMSO, and showed good film-forming capability. PEK-1-Er3+-HQ, PEK-1-Nd3+-HQ and PEK-1-Yb3+-HQ could emit intense fluorescence in the near-infrared region, and the strongest emission peaks located at 1527,1060 and 978 nm, respectively. The synergistic effects of PEK-1 and HQ could enhance obviously the emission intensities of these coordination polymers.
引文
[1]Weissman S I. Intramolecular energy tansfer the fluorescence of complexes of europium [J]. J Chem Phys,1942,10(4):214-217.
    [2]Wolff N E, Pressley R J. Optical maser action in Eu3+-containing organic matrix [J]. Appl Phys Lett,1963,2(8):152-154.
    [3]Yin W Q, Chen M Q, Lu T H, et al. Study on interaction between Tb(Ⅲ)and poly(N-isopropylacrylamide) [J]. Eur Polym J,2006,42(6):1305-1312.
    [4]Pizzoferrato R, Lagonigro L, Ziller T, et al. Forster energy transfer from poly(arylene-ethynylene)s to an erbium-porphyrin complex [J]. Chem Phys,2004, 300(1-3):217-225.
    [5]Liu L, Lu Y L, He L, et al. Novel europium-complex/nitrile-butadiene rubber composites [J]. Adv Funct Mater,2005,15(2):309-314.
    [6]Quang A Q L, Hierle R, Zyss J, et al. Demonstration of net gain at 1550 nm in an erbium-doped polymer single mode rib waveguide [J]. Appl Phys Lett,2006,89(14): 141124-1-141124-3.
    [7]Quang A Q L, Besson E, Hierle R, et al. Polymer-based materials for amplification in the telecommunication window:Influence of erbium complex concentration on relevant parameters for the elaboration of waveguide amplifiers around 1550 nm [J]. Opt Mater, 2007,29(8):941-948.
    [8]Du C X, Xu Y, Ma L, et al. Synthesis and fluorescent properties of europium-polymer complexes containing naphthoate ligand [J]. J Alloys Comp,1998,265(1-2):81-86.
    [9]Wang L H, Wang W, Zhang W G, et al. Synthesis and luminescence properties of novel Eu-containing copolymers consisting of Eu(Ⅲ)-acrylate-β-diketonate complex monomers and methyl methacrylate [J]. Chem Mater,2000,12(8):2212-2218.
    [10]Wang D M, Zhang J H, Lin Q, et al. Lanthanide complex/polymer composite optical resin with intense narrow band emission, high transparency and good mechanical performance [J]. J Mater Chem,2003,13(9):2279-2284.
    [11]Lira A C, Flores M, Arroyo R, et al. Optical spectroscopy of Er3+ions in poly(acrylic acid) [J]. Opt Mater,2006,28(10):1171-1177.
    [12]Wang Y P, Luo Y, Wang R M, et al. Synthesis and fluorescence properties of the mixed complexes of Eu(Ⅲ) with polymer ligand and thenoyl trifluoroacetone [J]. J Appl Polym Sci,1997,66(4):755-760.
    [13]Inoue K, Sasaki Y, Itaya T, et al. Polymerization of styrenes with pendant aminophosphazenes and fluorescence behaviors of their Eu3+ complexes [J]. Eur Polym J,1997,33(6):841-847.
    [14]Feng H Y, Jian S H, Wang Y P, et al. Fluorescence properties of ternary complexes of polymer-bond triphenylphosphine, triphenylarsine, triphenylstibine, and triphenylbismuthine, rare earth metal ions, and thenoyltrifluoroacetone [J]. J Appl Polym Sci,1998,68(10):1605-1611.
    [15]张希艳,卢利平,柏朝晖,等.稀土发光材料[M].北京:国防工业出版社,2005.
    [16]刘光华,孙洪志,李红英.稀土材料与应用技术[M].北京:化学工业出版社,2005.
    [17]张思远,毕宪章.稀土光谱理论[M].长春:吉林科学技术出版社,1991.
    [18]王冬梅.含稀土配合物聚合物透明材料的设计合成与发光性质研究[D].长春:吉林大学,2004.
    [19]Samelson H, Lempicki A, Brecher C. Laser phenomena in europium chelates. Ⅱ. kinetics and optical pumping in europium benzoylacetonate [J]. J Chem Phys,1964,40(9): 2553-2558.
    [20]黄春辉.稀土配位化学.北京:科学出版社,1997.
    [21]Sabbatini N, Grardigli M, Lehn J M. Luminescent lanthanide complexes as photochemical supramolecular devices [J]. Coord Chem Rev,1993,123(1-2):201-228.
    [22]Yan B, Zhang H J, Ni J Z. Luminescence properties of the rare earth (Eu3+and Tb3+) complexes with 1,10-Phenanthroline incorporated in silica matrix by a sol-gel method [J]. Mater Sci Eng B,1998,52(2-3):123-128.
    [23]Dexter D L. A theory of sensitized luminescence in solids [J]. J Chem Phys,1953,21 (5): 836-850.
    [24]Brown T D, Shepherd T M. Factors affecting the quantum efficiencies of fluorescent terbium(Ⅲ) chelates in the solid state [J]. J Chem Soc Dalton Trans,1973, (3): 336-341.
    [25]阎冰,张洪杰,王树彬,等.稀土3,4-呋喃二甲酸,1,10-二氮杂菲配合物的光物理性质[J].中国稀土学报,1998,16(4):375-378.
    [26]张华,彭勤纪,李亚明,等.现代有机波谱分析[M].北京:化学工业出版社,2005.
    [27]何晓东,冯嘉春.稀土有机光转换剂技术概述[J].兰化科技,1997,15(3):202-204.
    [28]刘力.稀土/高分子复合材料制备及其亚微观结构与发光、射线屏蔽及磁性能的关系研究[D].北京:北京化工大学,2004.
    [29]李琴,周德建,黄春辉,等.铽与1-苯基-3-甲基-4-酰代吡唑啉-5-酮的三元配合物的合成、表征与荧光性能[J].化学学报,1998,56(1):52-57.
    [30]李建宇,叶志殷.1,4-双(1’,3’-二苯基-5’-吡唑酮-4’)-1,4-丁二酮的合成及其稀土配合物的荧光性质[J].化学试剂,2002,24(3):155-157.
    [31]Shou H S, Ye J P, Yu Q. Luminescence properties of benzoic acid-terbium complexes [J]. J Lumin,1988,42(1):29-34.
    [32]Yu X J, Su Q D. Photoacoustic and luminescence properties study on energy transfer and relaxation processes of Tb(Ⅲ) complexes with benzoic acid [J]. J Photochem Photobiol A:Chem,2003,155(1-3):73-78.
    [33]Liu T H, Duan G J, Zhang Y P, et al. Synthesis and characterization of the luminescent lanthanide complexes with two similar benzoic acids [J]. Spectrochim Acta Part A:Mol Biomol Spectrosc,2009,74(4):843-848.
    [34]石进超,阿米娜,李恒欣,等.稀土Pr(Ⅲ)、Nd(Ⅲ)与2-[(取代苯胺基)羰基]苯甲酸的配合物研究[J].高等学校化学学报,1995,16(7):1003-1006.
    [35]周忠诚,阮建明,邹俭鹏,等.铕与苯甲酸及其衍生物配合物的光谱分析[J].中国稀土学报,2005,23(S2):1-4.
    [36]范丽岩,阎兰,胡晓黎,等.新氮杂冠醚稀土配合物的制备、表征及其荧光性质[J].中国稀土学报,2001,19(5):467-470.
    [37]Sabbatini N, Casnati A.Fischer C, et al. Luminescence of Eu3+and Tb3+complexes of new macrobicyclic ligands derived from p-tert-butylcalix[4]arene [J]. Inorg Chim Acta, 1996,252(1-2):19-24.
    [38]Evangelista R A, Pollak A, Allore B, et al. A new europium chelate for protein labelling and time-resolved fluorometric applications [J]. Clin Biochem,1988,21(3):173-178.
    [39]Petrochenkova N V, Mirochnik A G, Karasev V E, et al. Europium complexes with polyacrylic acid, containing o-phenanthroline groups [J]. Koord Khim,1991,17(11): 1567-1572.
    [40]Torelli S, Imbert D, Cantuel M, et al. Tuning the decay time of lanthanide-based near infrared luminescence from micro-to milliseconds through d→f energy transfer in discrete heterobimetallic complexes [J]. Chem Eur J,2005,11(11):3228-3242.
    [41]Thompson J, Blyth R I R, Gigli G, et al. Obtaining characteristic 4f-4f luminescence from rare earth organic chelates [J]. Adv Funct Mater,2004,14(10):979-984.
    [42]Van Deun R, Fias P, Driesen K, et al. Halogen substitution as an efficient tool to increase the near-infrared photoluminescence intensity of erbium (Ⅲ) quinolinates in non-deuterated DMSO [J]. Phys Chem Chem Phys,2003,5:2754-2757.
    [43]李建宇.稀土发光材料及其应用[M].北京:化学工业出版社,2003.
    [44]Filipescu N, Sager W F, Serafin F A. Substituent effects on intramolecular energy transfer. Ⅱ. fluorescence spectra of europium and terbium β-diketone chelates [J]. J Phys Chem,1964,68(11):3324-3346.
    [45]苏锵.稀土化学[M].郑州:河南科技出版社,1993.
    [46]Yang Y S. Gong M L, Li Y Y, et al. Effects of the structure of ligands and their Ln3+ complexes on the luminescence of the central Ln3+ ions [J]. J Alloys Compd,1994,207-208: 112-114.
    [47]Banks E, Okamoto Y, Ueba Y. Synthesis and characterization of rare earth metal-containing polymers Ⅰ. Fluorescent properties of ionomers containing Dy3+, Er3+, Eu3+ and Sm3+ [J]. J Appl Poly Sci,1980,25(3):359-368.
    [48]Okamoto Y, Ueba Y, Dzhanibekov N F, et al. Rare earth metal containing polymers.3. characterization of ion-containing polymer structures using rare earth metal fluorescence probes [J]. Macromolecules,1981,14(1):17-22.
    [49]Ueba Y, Banks E, Okamoto Y. Investigation on the synthesis and characterization of rare earth metal-containing polymers. Ⅱ. Fluorescence properties of Eu3+-polymer complexes containing β-diketone ligand [J]. J Appl Poly Sci,1980,25(9):2007-2017.
    [50]Nose Y, Hatano M, Kambara S. Syntheses of new chelate-polymers and its catalytic activities [J]. Makromolek Chem,1966,98:136-147.
    [51]Wang Y P, Lei Z Q, Feng H Y, et al. Synthesis and fluorescence properties of rare earth metal ion-polymer ligand-low molecular weight ligand ternary complexes [J]. J Appl Poly Sci,1992,45(9):1641-1648.
    [52]Tang J G, Huang X Y, Wang Y, et al. Effect of ligand-antenna integration (ALI) in macromolecular structures on fluorescent property of processable macromolecule-lanthanide complexes [J]. Opt Mater,2007,29(12):1774-1781.
    [53]Ueba Y, Zhu K J, Banks E, et al. Rare-earth-metal-containing polymers.5. synthesis, characterization, and fluorescence properties of Eu3+-polymer complexes containing carboxylbenzoyl and carboxylnaphthoyl ligands [J]. J Poly Sci Poly Chem Ed,1982,20(5): 1271-1278.
    [54]汪联辉.稀土金属配合物及其高分子的合成与光、磁性质研究[D].杭州:浙江大学,1997.
    [55]Du C X, Ma L, Xu Y, et al. Synthesis and photophysical characterization of terbium-polymer complexes containing salicylate ligand [J]. Eur Polym J,1998,34(1): 23-29.
    [56]Lee C I, Lim J S, Kim S H, et al. Synthesis and luminescent properties of a novel Eu-containing nanoparticle [J]. Polymer,2006,47(15):5253-5258.
    [57]Pan Y F, Zheng A N, Hu F Z, et al. Copolymers of styrene with a quaternary europium complex [J]. J Appl Polym Sci,2006,100(2):1506-1510.
    [58]Cong Y, Fu J, Cheng Z Y, et al. Self-organization and luminescent properties of nanostructured europium (Ⅲ)-block copolymer complex thin films [J]. J Polym Sci Part B:Polym Phys,2005,43(16):2181-2189.
    [59]Yang J, Sun W L, Jiang H J, et al. Synthesis and properties of two novel poly(Schiff base)s and their rare-earth complexes [J]. Polymer,2005,46(23):10478-10483.
    [60]Parra D F, Mucciolo A, Brito H F. Green luminescence system containing a Tb3+-β-diketonate complex doped in the epoxy resin as sensitizer [J]. J Appl Polym Sci,2004,94(3):865-870.
    [61]Liu H G, Lee Y I, Qin W P, et al. Distinct composite structure and properties of Eu(phen)2Cl3(H2O)2 in poly(methyl methacrylate) and polyvinylpyrrolidone [J]. J Appl Polym Sci,2004,92(6):3524-3530.
    [62]Liu H G, Lee Y I, Park S, et al. Photoluminescent behaviors of several kinds of europium ternary complexes doped in PMMA [J]. J Lumin,2004,110(1-2):11-16.
    [63]Bonzanini R, Girotto E M, Gonpalves M C, et al. Effects of europium (Ⅲ) acetylacetonate doping on the miscibility and photoluminescent properties of polycarbonate and poly(methyl methacrylate) blends [J]. Polymer,2005,46(1):253-259.
    [64]Seeta Rama Raju G, Buddhudu S. Photoluminescence analysis of Sm3+and Dy3+ doped PVA films [J]. J Appl Polym Sci,2008,107(4):2480-2485.
    [65]张秀菊,陈鸣才,冯嘉春,等.稀土高分子光致发光材料的研究进展[J].中国塑料,2002,16(5):16-20.
    [66]Guo L, Wu S Z, Zeng F, et al. Synthesis and fuorescence property of terbium complex with novel schiff-base macromolecular ligand [J]. Eur Polym J,2006,42(7):1670-1675.
    [67]Shunmugam R, Tew G N. Dialing in color with rare earth metals:facile photoluminescent production of true white light [J]. Polym Adv Technol,2007,18(11):940-945.
    [68]Zhao L M, Yan B. Novel polymer-inorganic hybrid materials fabricated with in situ composition and luminescent properties [J]. J Non-Cryst Solids,2007,353(52-54): 4654-4659.
    [69]Liu X Y, Hu Y L, Wang B Y, et al. Synthesis and fluorescent properties of europium-polymer complexes containing 1,10-phenanthroline [J]. Synth Met,2009, 159(15-16):1557-1562.
    [70]张红.光致发光稀土高分子材料的制备与性能研究[D].扬州:扬州大学,2005.
    [71]小寺正子.けぃ光性樹脂の製造方法:日本,昭52-5897[P],1977,01,17.
    [72]山添勝彦,安嵨章隆,北浜良治.透明発光性ボリマ-组成物及ひ光変换材:日本,昭57-143354[P],1982,09,04.
    [73]张其锦,陈国栋,汪月生,等.含Sm聚合物的制备及荧光性质[J].材料研究学报,1992,6(5):435-439.
    [74]Liu H G, Park S, Jang K W, et al. Influence of ligands on the photoluminescent properties of Eu3+ in europium β-diketonate/PMMA-doped systems [J]. J Lumin,2004,106(1):47-55.
    [75]Pan Y F, Zheng A N, Xiao H N, et al. Preparation and characterization of rare earth complex europium3+-acrylate-1,10-phenanthroline grafted onto polypropylene [J]. J Appl Polym Sci,2006,102(2):1547-1552.
    [76]Adachi G, Takahashi A, Mishima T, et al. Fluorescence of a europium2+-(methacryloyl-oxymethyl-15-crown-5-oligoether) polymer complex [J]. Chem Express,1988,3(2):97-100.
    [77]Snitzer E. Optical maser action of Nd3+in a barium crown glass [J]. Phys Rev Lett, 1961,7(12):444-446.
    [78]王怀善.光放大用有机-无机杂化材料的合成与近红外发光特性研究[D].杭州:浙江大学,2007.
    [79]Okamoto Y. Synthesis, Characterization, and applications of polymers containing lanthanide metals [J]. J Macromol Sci Part A:Pure Appl Chem,1987,24(3-4):455-477.
    [80]Kuriki K, Nishihara S, Nishizawa Y, et al. Fabrication and optical properties of neodymium-, praseodymium-and erbium-chelates-doped plastic optical fibres [J]. Electron Lett,2001,37(7):415-417.
    [81]Kuriki K, Koike Y, Okamoto Y. Plastic optical fiber lasers and amplifiers containing lanthanide complexes [J]. Chem Rev,2002,102(6),2347-2356.
    [82]Suzuki H, Hattori Y, Iizuka T, et al. Organic infrared optical materials and devices based on an organic rare earth complex [J]. Thin Solid Films,2003,438-439:288-293.
    [83]Silva M C, Cristovan F H, Nascimento C M, et al. Judd-Ofelt analysis of Nd3+ions in poly(styrene sulfonate) films [J]. J Non-Cryst Solids,2006,352(50-51):5296-5300.
    [84]Zhang Q J, Ming H, Zhai Y. A novel unclad Nd3+-doped polymer optical fiber [J]. J Appl Polym Sci,1996,62(6):887-892.
    [85]Zhang Q J, Liu W, Dai P. Study of glass transition of Gd3+doped poly(methyl methacrylate) by the internal friction method [J]. Polymer,1998,39(16): 3787-3792.
    [86]Yang B, Ming H, Zhang Q J, et al. Characterization of clusters in a novel Nd3+-doped polymer optical fiber [J]. Chin Phys Lett,1998,15(4):272-274.
    [87]Xu X S, Ming H, Zhang Q J. Optical-transition probabilities of Nd3+ ions in polymer optical fibers [J]. Optics Commun,2001,199(5-6):369-373.
    [88]Guo Y, Zheng X, Ming H, et al. Optical property of fractal clusters in Nd3+doped polymer optical fiber [J]. J Mater Sci Lett,2001,20(6):521-523.
    [89]Liang H, Zheng Z Q, Chen B, et al. Optical studies of Er(DBM)3Phen containing methyl methacrylate solution and poly (methyl methacrylate) matrix [J]. Mater Chem Phys,2004, 86(2-3):430-434.
    [90]Chen B, Dong N, Xu J, et al. Characterization of spectroscopic of Pr(DBM) 3(TPPO)2 containing poly (methyl methacrylate) [J]. Spectrochim Acta Part A:Mol Biomol,2006, 63(2):289-294.
    [91]孟继武,任新光,徐叙瑢.光生态农膜的光学稳定性[J].塑料科技,1998,(5):1-3.
    [92]李文连,王庆荣,卫革东,等.含稀土有机配合物的光能转换蔬菜大棚薄膜的研究[J].稀土,1993,14(1):25-28.
    [93]王贺云,代兵,王运华,等.含钐稀土离子转光农膜的制备及其性能研究[J].塑料,2009,38(2):57-58.
    [94]黄度,周树华,刘剑,等.稀土掺杂聚氨酯光固化涂层光转换膜的制备及性能[J].高分子材料科 学与工程,2003,19(4):173-176.
    [95]汪联辉,章文贡.含烷氧基钕共聚物的合成及其光学性质[J].高等学校化学学报,1996,17(5):808-811.
    [96]浦鸿汀,苏发英,王坚,等.光致发光聚甲基丙烯酸甲酯塑料的研究[J].塑料工业,1998,26(4):113-118.
    [97]浦鸿汀,苏发英,袁莹.长余辉荧光聚苯乙烯塑料的研究[J].建筑材料学报,1998,1(2):160-163.
    [98]刘力,张立群,金日光.稀土/高分子复合材料的研究进展[J].中国稀土学报,2001,19(3):193-199.
    [99]Ida K. Resin composition containing rare earth element and production thereof:US, 83548444 [P].1983,10,12.
    [100]Yoshioka N, Nishide H, Tsuchida E. Complexation of gadolinium ion with poly(methacrylic acid)s and magnetic properties of the complexes [J]. Inorg Chim Acta, 1987,128(1):135-138.
    [101]Chen X S. Study on synthesis of tetraphenyl porphyrin metal polymer and its physicochemical properties [D]. Japan:Osaka University,1987.
    [102]Bergbreiter D E, Chen L B, Chandran R. Recyclable polymer-bound lanthanide diene polymerization catalysts [J]. Macromolecules,1985,18(6):1055-1057.
    [103]李玉良,逢束芬,薛大伟,等.聚合物载体-稀土金属络合物的研究Ⅱ.在聚合物载体-钕络合物催化体系下丁二烯的定向聚合[J].高分子通讯,1985,(2):111-117.
    [104]李玉良,于广谦,姚健.聚合物载体-稀土金属络合物的研究Ⅷ.聚合物载体-双金属络合物对丁二烯聚合的催化活性[J].高分子学报,1992,(5):572-576.
    [105]李玉良,韩冬,欧阳均.聚合物载体-稀土金属络合物的研究Ⅲ.用聚合物载体-钕络合物-氯代烷-三异丁基铝催化体系聚合共轭双烯[J].催化学报,1986,7(3):276-282.
    [106]于广谦,李玉良.聚合物载体-稀土金属络合物的研究Ⅴ.聚(乙烯-丙烯酸)钕的合成及其对丁二烯聚合的催化活性[J].催化学报,1988,9(2):190-196.
    [107]朱永楷,李玉良,于广谦,等.聚合物载体—稀土金属络合物的研究Ⅻ.聚[苯乙烯—甲基丙烯酸β(甲基亚硫酰基)乙酯]载体-三氯化钕络合物-三异丁基铝体系催化丁二烯聚合的活性[J].合成橡胶工业,1994,17(5):280-282.
    [108]李一贯,李玉良,朱永楷,等.聚合物载体-稀土金属络合物的研究ⅩⅢ.聚[苯乙烯—甲基丙烯酸β(甲基亚硫酰基)乙酯]的结构与其稀土金属络合物催化丁二烯聚合的活性[J].合成橡胶工业,1995,18(6):344-346.
    [109]郑文治,李玉良,于广谦,等.聚合物载体-稀土金属络合物的研究ⅩⅤ.聚(苯乙烯-丙烯酰胺)载体-氯化钕络合物对异戊二烯聚合的催化行为[J].分子催化,1996,10(3):178-182.
    [110]郑文治,李玉良,于广谦,等.聚合物载体-稀土金属络合物的研究ⅩⅥ.聚合物的结构因素与聚合物载体-金属络合物的活性[J].合成橡胶工业,1997,20(1):17-20.
    [111]高田幸人,国部恭一郎.ビニル樹脂安定化法:日本,昭46-40421[P],1971.
    [112]宇野次生,野瀨寿,保坂昌司.(?)化ビニル系樹脂组成物:日本,昭57-40539[P],1982,03,06.
    [113]王增林,孙万明,唐功本.添加稀土氧化物对聚丙烯热稳定性的影响[J].稀土,1994,15(2):13-17.
    [114]汪联辉,王文,唐洁渊,等.稀土掺杂改性聚苯乙烯研究[J].塑料科技,1997,(6):37-39.
    [115]Chen Z X, Shen Z Q. Anhydrous lanthanide chlorides doped rare-earth polyacetylene [J]. Inorg Chim Acta,1986,122(2):249-253.
    [116]张永祥.稀土在MC尼龙上的应用[J].稀土,1981,(2):61-62.
    [117]Liang H, Chen B, Xu J, et al. Properties of Eu chelate doped polymer thin film [J]. Mater Lett,2005,59(29-30):4030-4033.
    [118]唐洁渊,章文贡.含稀土铕(Ⅲ)配位聚合物的研究——铕(Ⅲ)-噻吩甲酰三氟丙酮-苯乙烯-丙烯酸共聚物的研究[J].高分子学报,2002,(4):479-486.
    [119]Bonner W H. Aromatic polyketones and preparation thereof:US,3065205 [P].1962,11, 20.
    [120]Goodman I. Polymerieketones:BR,871227 [P].1964,07,06.
    [121]Rose J B. Production of aromatic polyketones:US,4398020 [P].1983,08,09.
    [122]张海春,陈天禄,袁雅桂.合成带有酞侧基的新型聚醚醚酮:中国,85108751A[P].1987,06,03.
    [123]Baeyer A. Ann,1880:202:80.
    [124]Kumar R, Makrandi J K, Singh I, et al. Synthesis, characterizations and luminescent properties of terbium complexes with methoxy derivatives of 2'-hydroxy-2-phenylacetophenone [J]. Spectrochim Acta Part A:Mol Biomol Spectrosc, 2008,69(4):1119-1124.
    [125]Song Y S, Yan B, Chen Z X. Different crystal structure and photophysical properties of lanthanide complexes with 5-bromonicotinic acid [J]. J Solid State Chem,2004, 177(10):3805-3814.
    [126]Yan Z Z, Tang Y, Liu W S, et al. Synthesis, characterization and luminescent properties of lanthanide complexes with an unsymmetrical tripodal ligand [J]. J Lumin,2008, 128(9):1394-1398.
    [127]常毓巍,杨敬军.对称吡啶双酰胺及其稀土配合物的合成、表征与荧光性质的研究[J].中国稀土学报,2006,24(2):146-151.
    [128]王连军.稀土铕配合物的合成、表征及其荧光性能研究[J].中国塑料,2006,20(11):31-36.
    [129]燕来,赵永亮,赵凤英,等.对叔丁基杯[8]芳烃稀土配合物的合成、表征及荧光研究[J].光谱学与光谱分析,2006,26(5):928-932.
    [130]杨静,何其庄,郁慧,等.稀土苯丙氨酸邻菲咯啉配合物的合成、表征及抗菌活性研究[J].中国稀土学报,2006,24(1):103-109.
    [131]Lv Y G, Zhang J C, Cao W L, et al. Synthesis and characteristics of a novel rare earth complex of Eu(TTA)2(N-HPA)Phen [J]. J Photochem Photobiol A:Chem,2007,188(2-3): 155-160.
    [132]Xu C J, Xie F, Guo X Z, et al. Synthesis and cofluorescence of Eu(Y) complexes with salicylic acid and o-phenanthroline [J]. Spectrochim Acta Part A:Mol Biomol Spectrosc,2005,61(9):2005-2008.
    [133]朱丽,陈三平,杨旭武,等.稀土配合物RE(Et2dtc)3(phen)的光谱性质[J].光谱学与光谱分析,2005,25(12):1982-1985.
    [134]Xin H, Ebina Y, Ma R, et al. Thermally stable luminescent composites fabricated by confining rare earth complexes in the two-dimensional gallery of titania nanosheets and their photophysical properties [J]. J Phys Chem B,2006,110(20):9863-9868.
    [135]王淑萍,张建军.铕-丙烯酸-邻菲罗啉三元配合物的合成及荧光性质研究[J].河北师范大学学报(自然科学版),2001,25(3):354-367.
    [136]胡明,赵永亮,李树臣,等.稀土-对叔丁基杯[8]芳烃-N,N-二甲基甲酰胺配合物的合成、表征及铽的光致发光[J].稀土,2004,25(3):16-19.
    [137]Yu M, Lin J, Wang Z, et al. Fabrication, patterning, and optical properties of nanocrystalline YVO:A (A=Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol-gel soft lithography [J]. Chem Mater,2002,14(5),2224-2231.
    [138]Wang K Z, Gao L H, Huang C H. Optical properties of the highly ordered Langmuir-Blodgett film of a strongly luminescent Eu(Ⅲ) complex [J]. J Photochem Photobiol A:Chem, 2003,156(1-3):39-43.
    [139]Georges J. Lanthanide-sensitized luminescence and applications to the determination of organic analytes [J]. Analyst,1993,118:1481-1486.
    [140]Kirby A F, Richardson F S. Detailed analysis of the optical absorption and emission spectra of Eu3+ in the trigonal (C3) Eu(DBM)3·H2O system [J]. J Phys Chem,1983,87(14): 2544-2556.
    [141]Liang H, Zheng Z Q, Li Z C, et al. Fabrication and amplified spontaneous emission of Eu(DBM)3Phen doped step-index polymer optical fiber [J]. Opt Quantum Electron, 2004,36(15):1313-1322.
    [142]Kumar A, Rai D K, Rai S B. Optical studies of Eu3+ ions doped in tellurite glass [J]. Spectrochim Acta Part A:Mol Biomol Spectrosc,2002,58(10):2115-2125.
    [143]Wu S, He P S, Guan J B, et al. Effects of synergetic ligands on structure and fluorescence properties of Langmuir and Langmuir-Blodgett films containing Eu(TTA)3nL [J]. J Photochem Photobiol A:Chem,2007,188(2-3):218-225.
    [144]Annapurna K, Dwivedi R N, Kundu P, et al. Fluorescence properties of Sm3+:ZnCl2-BaCl2-LiCl glass [J]. Mater Res Bull,2003,38(3):429-436.
    [145]Mirochnik A G, Petrochenkova N V, Karasev V E. "Antenna effect" in macromolecular complexes of Eu3+dibenzoylmethanate with poly (acrylic acid) containing chromophoric groups [J]. Polym Sci B,2000,42:271-272.
    [146]Lenaerts P, Driesen K, Van Deun R, et al. Covalent coupling of luminescent tris(2-thenoyltrifluoroacetonato) lanthanide(Ⅲ) complexes on a merrifield resin [J]. Chem Mater,2005,17(8):2148-2154.
    [147]吴宇雄,周尽花,赵鸿斌.5-氨基-1,10-邻菲罗啉的合成研究[J].精细石油化工,2004,(4):7-9.
    [148]Binnemans K, Lenaerts P, Driesen K, et al. A luminescent tris(2-thenoyltrifluoroacetonato)europium(Ⅲ) complex covalently linked to a 1,10-phenanthroline-functionalised sol-gel glass [J]. J Mater Chem,2004,14: 191-195.
    [149]Ding J J, Jiu H F, Dao J, et al. Combinatorial study of cofluorescence of rare earth organic complexes doped in the poly(methyl methacrylate) matrix [J]. J Comb Chem. 2005,7(1):69-72.
    [150]王继业,宋会花,杨芳,等.均苯三甲酸铕及铕镧配合物的合成及荧光性质[J].发光学报,2006,27(5):817-821.
    [151]白峰,邓振波,徐征,等.一种新型共掺杂稀土配合物的发光特性[J].光谱学与光谱分析,2004,24(10):1168-1171.
    [152]Cho A, Kim S Y, Lee M, et al. Fast luminescence decay processes of photoexcited Eu3+ in CaS:Eu,La [J]. J Lumin.2000,91(3-4):215-221.
    [153]Nag A, Kutty T R N. Photoluminescence due to efficient energy transfer from Ce3+ to Tb3+and Mn2+in Sr3Al10SiO20 [J]. Mater Chem Phys,2005,91(2-3):524-531.
    [154]丁士进,张卫,王季陶,等.铈、铽共掺杂的硼磷酸镧磷光体的制备研究[J].化学研究与应用,2000,12(3):300-303.
    [155]王晓君,林海,刘行仁.Ce3+和Tb3+掺杂的稀土硼酸盐玻璃的发光性质[J].中国稀土学报,1999,17(4):318-321.
    [156]Luo Y H, Yan Q, Wu S, et al. Inter-and intra-molecular energy transfer during sensitization of Eu(DBM)3Phen luminescence by Tb(DBM)3Phen in PMMA [J]. J Photochem Photobiol A:Chem,2007,191(2-3):91-96.
    [157]Li Q, Li T, Wu J G. Luminescence of europium(Ⅲ) and terbium(Ⅲ) complexes incorporated in poly(vinyl pyrrolidone) matrix [J]. J Phys Chem B,2001,105(49): 12293-12296.
    [158]de Souza J M, Alves S Jr, De Sa G F, et al. Doped polymers with Ln(Ⅲ) complexes: simulation and control of light colors [J]. J Alloys Compd,2002,344(1-2):320-322.
    [159]连锡山,盛慧,刘占梅.苯甲酸稀土(Eu,La)配合物的红外和荧光光谱研究[J].光谱学与光谱分析,1999,19(4):562-565.
    [160]赵永亮,赵凤英.苯甲酰胺-桂皮酸-铕-镧配合物的红外光谱及荧光光谱研究[J].稀土,2000,21(4):5-8.
    [161]吴霞,冉德焕,韩云晓,等.铕-镧-诺氟沙星-十二烷基磺酸钠稀土共发光体系的研究及分析应用[J].分析化学,2006,34(S1):251-253.
    [162]刘春棠,何大伟,李少霞,等.稀土离子Ce,Tb掺杂硼磷酸锶荧光粉的发光性质[J].光谱学与光谱分析,2005,25(8):1203-1206.
    [163]Wang F, Song H W, Pan G H, et al. Luminescence properties of Ce3+and Tb3+ions codoped strontium borate phosphate phosphors [J]. J Lumin,2008,128(12):2013-2018.
    [164]王怀善,钱国栋,王民权.通讯窗口稀土(钕和铒)掺杂有源光波导材料的研究进展[J].材料导报,2002,16(4):44-46.
    [165]Khreis O M, Curry R J, Somerton M, et al. Infrared organic light emitting diodes using neodymium tris-(8-hydroxyquinoline) [J]. J Appl Phys,2000,88(2):777-780.
    [166]Kawamura Y, Wada Y, Hasegawa Y, et al. Observation of neodymium electroluminescence [J]. Appl Phys Lett,1999,74(22):3245-3247.
    [167]Lin S, Feuerstein R J, Mickelson A R. A study of neodymium-chelate-doped optical polymer waveguides [J]. J Appl Phys,1996,79(6):2868-2874.
    [168]Berkdemir C, Ozsoy S. Numerical analysis of the signal gain and noise figure of Yb3+-sensitized Er3+-doped fiber amplifiers at different pumping power configurations [J]. Opt Mater,2008,31(2):229-232.
    [169]Chang J, Wang Q P, Zhang X Y, et al. S-band optical amplification by an internally generated pump in thulium ytterbium codoped fiber [J]. Opt Express,2005,13(11): 3902-3912.
    [170]Tanabe S, Kouda T, Hanada T. Energy transfer and 1.3μm emission in Pr-Yb codoped tellurite glasses [J]. J Non-Cryst Solids,2000,274(1-3):55-61.
    [171]Slooff L H, de Dood M J A, van Blaaderen A, et al. Erbium-implanted silica colloids with 80% luminescence quantum efficiency [J]. Appl Phys Lett,2000,76(25): 3682-3684.
    [172]Soraru G D, Zhang Y, Ferrari M, et al. Novel Er-doped SiC/SiO2 nanocomposites: Synthesis via polymer prolysis and their optical characterization [J]. Journal of the European Ceramic Society,2004,25(2-3):277-281.
    [173]Pivin J C, Gaponenko N V, Mudryi A V, et al. Photoluminescence of Er-implanted silica, polysiloxane and porous silicon films [J]. Mater Sci Eng B,2000,69-70:215-218.
    [174]王积涛,周晓欣.希土8-羟基喹啉醋酸盐的合成与性质[J].无机化学学报,1989,5(1):102-105.
    [175]Li Q G, Li X, Huang Y, et al. Synthesis, characterization and standard molar enthalpy of formation of La(C7H5O3)2·(C9H6NO) [J]. Thermochimica Acta,2006,441(2):195-198.
    [176]江涛,曾繁涤.聚8,8'-二羟基-5,5'-偶氮苯二喹啉金属螯合物的合成及荧光性质[J].应用化学,2000,17(3):334-336.
    [177]何其庄,杨小飞,钱秀萍,等.稀土间氨基苯甲酸8-羟基喹啉三元配合物的合成、表征及抑菌作用研究[J].中国稀土学报,2002,20(S2):1-5.
    [178]Wang H S, Qian G D, Wang Z Y, et al.1.53 μm photoluminescence from ORMOSIL films doped with erbium complexes [J]. J Lumin,2005,113(3-4):214-220.
    [179]张幼珠,黄英.硝酸铈与8-羟基喹啉配合物的合成、表征及抗菌性能[J].印染助剂,2003,20(2):12-14.
    [180]Yurdakul $, Arici K. Synthesis and vibrational spectra of metal halide complexes of 8-hydroxyquinoline in relation to their structures [J]. J Mol Struct,2004,691(1-3): 45-49.
    [181]Magennis S W, Ferguson A, Bryden T, et al. Time-dependence of erbium(Ⅲ) tris(8-hydroxyquinolate) near-infrared photoluminescence:implications for organic light-emitting diode efficiency [J]. Synth Metal,2003,138(3):463-469.
    [182]蒋琪英,陈明剑,胡亚敏,等.8-羟基喹啉铋的合成、表征与光谱研究[J].化学研究与应用,2008,20(1):58-61.
    [183]陈鹤,刘粤惠,周跃芬,等.1.55 μ m光纤放大器用掺Er3-碲酸盐玻璃光谱性能研究[J].功能材料,2004,35:362-366.
    [184]Wong S F, Pun E Y B, Chung P S. Er3+-Yb3+ codoped phosphate glass waveguide amplifier using Ag+-Li+ion exchange [J]. IEEE Photon Thechn Lett,2002,14(1):80-82.
    [185]Liu K, Pun E Y B. K+-Na+ion-exchanged waveguides in Er3+-Yb3+codoped phosphate glasses using field-assisted annealing [J]. Appl Opt,2004,43(15):3179-3184.
    [186]Slooff L H, Polman A, Oude Wolbers M P, et al. Optical properties of erbium-doped organic polydentate cage complexes [J]. J Appl Phys,1998,83(1):497-503.