1. [地质云]滑坡
The role of FAST in pulsar timing arrays
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The role of FAST in pulsar timing arrays
  • 作者:George ; Hobbs ; Shi ; Dai ; Richard ; N.Manchester ; Ryan ; M.Shannon ; Matthew ; Kerr ; Ke-Jia ; Lee ; Ren-Xin ; Xu
  • 英文作者:George Hobbs;Shi Dai;Richard N.Manchester;Ryan M.Shannon;Matthew Kerr;Ke-Jia Lee;Ren-Xin Xu;CSIRO Astronomy and Space Science;Department of Astronomy, School of Physics, Peking University;Kavli Institute for Astronomy and Astrophysics, Peking University;Max-Planck-Institut für Radioastronomie;
  • 英文关键词:stars:pulsars;;gravitational waves
  • 中文刊名:TTWL
  • 英文刊名:天文和天体物理学研究(英文版)
  • 机构:CSIRO Astronomy and Space Science;Department of Astronomy, School of Physics, Peking University;Kavli Institute for Astronomy and Astrophysics, Peking University;Max-Planck-Institut für Radioastronomie;
  • 出版日期:2019-02-15
  • 出版单位:Research in Astronomy and Astrophysics
  • 年:2019
  • 期:v.19
  • 基金:support from the Australian Research Council (ARC) Future Fellowship programme;; support from the National Natural Science Foundation of China (11225314)
  • 语种:英文;
  • 页:TTWL201902005
  • 页数:16
  • CN:02
  • ISSN:11-5721/P
  • 分类号:39-54
摘要
The Five-hundred-meter Aperture Spherical radio Telescope(FAST) will become one of the world-leading telescopes for pulsar timing array(PTA) research. The primary goals for PTAs are to detect(and subsequently study) ultra-low-frequency gravitational waves, to develop a pulsar-based time standard and to improve solar system planetary ephemerides. FAST will have the sensitivity to observe known pulsars with significantly improved signal-to-noise ratios and will discover a large number of currently unknown pulsars. We describe how FAST will contribute to PTA research and show that jitter-and timing-noise will be the limiting noise processes for FAST data sets. Jitter noise will limit the timing precision achievable over data spans of a few years while timing noise will limit the precision achievable over many years.
        The Five-hundred-meter Aperture Spherical radio Telescope(FAST) will become one of the world-leading telescopes for pulsar timing array(PTA) research. The primary goals for PTAs are to detect(and subsequently study) ultra-low-frequency gravitational waves, to develop a pulsar-based time standard and to improve solar system planetary ephemerides. FAST will have the sensitivity to observe known pulsars with significantly improved signal-to-noise ratios and will discover a large number of currently unknown pulsars. We describe how FAST will contribute to PTA research and show that jitter-and timing-noise will be the limiting noise processes for FAST data sets. Jitter noise will limit the timing precision achievable over data spans of a few years while timing noise will limit the precision achievable over many years.
引文
Babak,S.,&Sesana,A. 2012, Phys. Rev. D,85, 044034
    Backer, D. C., Kulkarni, S. R., Heiles, C., Davis, M. M.,&Goss,W. M. 1982, Nature, 300, 615
    Boyles,J.,Lynch, R. S.,Ransom,S. M.,et al. 2013, ApJ,763,80
    Chamberlin, S. J.,&Siemens, X. 2012, Phys. Rev. D, 85, 082001
    Champion, D. J., Ransom, S. M., Lazarus, P., et al. 2008, Science,320,1309
    Champion,D. J.,Hobbs,G. B.,Manchester,R. N.,et al. 2010,ApJ,720, L201
    Cognard,I.,&Backer,D. C. 2004, ApJ,612, L125
    Cognard,I.,Bourgois,G.,Lestrade,J.-F.,et al. 1993,Nature,366, 320
    Cordes, J. M.,&Jenet, F. A. 2012, ApJ, 752, 54
    Cordes,J. M.,Freire,P. C. C.,Lorimer,D. R., et al. 2006, ApJ,637, 446
    Cordes,J. M.,&Shannon, R. M. 2010,-ArXiV 1010, 3785:http://adsabs.harvard.edu/abs/2010 arXiv1010.3785C
    Demorest,P. B.,2011.MNRAS,416, 2821
    Demorest, P. B., Ferdman, R. D., Gonzalez, M. E., et al. 2013,ApJ, 762, 94
    Deng, X. P., Hobbs, G., You, X. P., et al. 2013, Advances in Space Research, 52, 1602
    Edwards, R. T., Hobbs, G. B.,&Manchester, R. N. 2006,MNRAS,372, 1549
    Ellis, J. A. 2013, Classical and Quantum Gravity, 30, 224004
    Ellis, J. A., Siemens, X.,&Creighton, J. D. E. 2012, ApJ, 756,175
    Faulkner, A. J., Stairs, I. H., Kramer, M., et al. 2004, MNRAS,355, 147
    Fienga, A., Manche, H., Laskar, J.,&Gastineau, M. 2008, A&A,477,315
    Foster, R. S.,&Backer, D. C. 1990, ApJ, 361, 300
    Freire, P. C. C., Wex, N., Esposito-Farese, G., et al. 2012,MNRAS,423, 3328
    Hellings, R. W.,&Downs, G. S. 1983, ApJ, 265, L39
    Hobbs, G. 2013, Classical and Quantum Gravity, 30, 224007
    Hobbs, G. B., Edwards, R. T.,&Manchester, R. N. 2006,MNRAS, 369, 655
    Hobbs.G.,Hollow,R.,Champion,D.,et al. 2009, PASA,26, 468
    Hobbs,G.,Lyne,A. G.,&Kramer, M. 2010a,MNRAS,402,1027
    Hobbs,G.,Archibald, A., Arzoumanian, Z., et al. 2010b,Classical and Quantum Gravity, 27, 084013
    Hobbs, G.,Miller,D.,Manchester,R. N.,et al. 2011,PASA,28,202
    Hobbs, G., Coles, W., Manchester, R. N., et al. 2012, MNRAS,427, 2780
    Hotan, A.W., van Straten,W.,&Manchester, R. N. 2004, PAS A,21,302
    Hulse,R. A.,&Taylor,J. H. 1975, ApJ,195, L51
    Jenet,F. A., Armstrong,J. W.,&Tinto, M. 2011,Phys. Rev. D,83,081301
    Jenet,F. A.,Lommen,A.,Larson,S. L.,&Wen,L. 2004, ApJ,606, 799
    Jenet,F. A., Hobbs,G. B., van Straten,W., et al. 2006, ApJ,653,1571
    Keith,M. J., Johnston,S.,Bailes,M.,et al. 2012, MNRAS,419,1752
    Keith,M. J.,Coles,W., Shannon,R. M.,et al. 2013, MNRAS,429,2161
    Kesteven,M.,Hobbs,G.,Clement,R.,et al. 2005,Radio Science, 40, 5
    Knispel,B., Allen,B.,Cordes,J. M.,et al. 2010, Science, 329,1305
    Kramer, M.,&Champion, D. J. 2013, Classical and Quantum Gravity,30, 224009
    Lee, K. J. 2013, Classical and Quantum Gravity, 30, 224016
    Lee,K. J., Jenet,F. A.,&Price,R. H. 2008, ApJ,685,1304
    Lee,K.,Jenet,F. A.,Price,R. H.,Wex, N.,&Kramer,M. 2010,ApJ,722, 1589
    Lee,K. J., Wex,N.,Kramer,M.,et al. 2011,MNRAS,414, 3251
    Lee, K. J., Bassa, C. G., Janssen, G. H., et al. 2012, MNRAS,423,2642
    Li, D., Nan, R.,&Pan, Z. 2013, in IAU Symposium, 291,Neutron Stars and Pulsars:Challenges and Opportunities After80 Years, ed. J. van Leeuwen, 325
    Lyne,A.,Hobbs,G.,Kramer,M.,Stairs, I.,&Stappers, B. 2010,Science,329, 408
    Madison, D. R.,Chatterjee,S.,&Cordes,J. M. 2013, ApJ, 777,104
    Maitia, V., Lestrade,J.-F.,&Cognard,I. 2003, ApJ,582, 972
    Manchester,R. N. 2013, arXiv:1309.7392
    Manchester,R. N.,Hobbs, G. B.,Teoh, A.,&Hobbs,M. 2005,AJ,129, 1993
    Manchester,R. N.,Hobbs,G.,Bailes,M.,et al. 2013, PASA,30,e017
    McLaughlin, M. A. 2013, Classical and Quantum Gravity, 30,224008
    Melatos,A.,&Link, B. 2014, MNRAS,437, 21
    Mingarelli, C. M. F., Sidery,T., Mandel,I.,&Vecchio, A. 2013,Phys. Rev. D,88, 062005
    Nan,R.,Li,D.,Jin,C.,et al. 2011,International Journal of Modern Physics D,20, 989
    Newhall,X. X., Standish,E. M.,&Williams,J. G. 1983, A&A,125, 150
    Ng,C.,&HTRU Collaboration. 2013, in IAU Symposium,291,Neutron Stars and Pulsars:Challenges and Opportunities After80 Years, ed. J. van Leeuwen, 53
    Nita,G. M.,&Gary, D. E. 2010, MNRAS,406, L60
    Olmez,S.,Mandic, V.,&Siemens, X. 2010, Phys. Rev. D, 81,104028
    Oslowski,S.,van Straten,W., Demorest,P.,&Bailes,M. 2013,MNRAS,430,416
    Oslowski, S., van Straten, W., Hobbs, G. B., Bailes, M.,&Demorest,P. 2011, MNRAS,418, 1258
    Petiteau, A., Babak, S., Sesana, A.,&de Araujo, M. 2013,Phys. Rev. D, 87, 064036
    Pitjeva, E. V. 2005, Solar System Research, 39, 176
    Ravi, V.,Wyithe,J. S. B.,Hobbs, G.,et al. 2012, ApJ,761,84
    Ravi, V., Wyithe, J. S. B., Shannon, R. M., Hobbs, G.,&Manchester,R. N. 2014, MNRAS,442, 56
    Sanidas, S. A., Battye, R. A.,&Stappers, B. W. 2012,Phys. Rev. D, 85, 122003
    Sanidas,S. A., Battye,R. A.,&Stappers,B. W. 2013, ApJ,764,108
    Sesana, A. 2013, Classical and Quantum Gravity, 30, 244009
    Sesana,A., Vecchio, A.,&Colacino, C. N. 2008, MNRAS,390,192
    Shannon, R. M.,&Cordes, J. M. 2010, ApJ, 725, 1607
    Shannon,R. M.,&Cordes,J. M. 2012, ApJ,761,64
    Shannon, R. M., Cordes, J. M., Metcalfe, T. S., et al. 2013a, ApJ,766, 5
    Shannon, R. M., Ravi, V., Coles, W. A., et al. 2013b, Science,342, 334
    Shannon, R. M., Ostowski, S., Dai, S., et al. 2014,arXiv:1406.4716
    Siemens, X., Ellis, J., Jenet, F.,&Romano, J. D. 2013, Classical and Quantum Gravity, 30, 224015
    Stinebring, D. 2013, Classical and Quantum Gravity, 30, 224006
    Tong, M. L., Zhang, Y., Zhao, W., et al. 2014, Classical and Quantum Gravity, 31, 035001
    van Haasteren, R.,&Levin, Y. 2010, MNRAS, 401, 2372
    van Haasteren, R.,Levin, Y., Janssen,G. H., et al. 2011,MNRAS,414, 3117
    van Straten,W. 2013, ApJS,204, 13
    Verbiest,J. P. W., Bailes.,M.,van Straten,W., et al. 2008, ApJ,679, 675
    Wang,J. B.,Hobbs,G.,Coles,W., et al. 2015, MNRAS, 446,1657
    Wolszczan,A.,&Frail,D. A. 1992, Nature,355, 145
    Yan, W. M., Manchester, R. N., van Straten, W., et al. 2011a,MNRAS,414, 2087
    Yan, W. M., Manchester, R. N., Hobbs, G., et al. 2011b, Ap&SS,335, 485
    Yardley, D. R. B., Hobbs, G. B., Jenet, F. A., et al. 2010,MNRAS,407, 669
    Yardley, D. R. B., Coles, W. A., Hobbs, G. B., et al. 2011,MNRAS,414, 1777
    You,X. P.,Hobbs,G.,Coles,W. A.,et al. 2007, MNRAS,378,493
    You, X. P., Coles, W. A., Hobbs, G. B.,&Manchester, R. N.2012, MNRAS, 422, 1160
    Zhu, X.-J.,Wen, L.,Hobbs, G.,et al. 2015, MNRAS,449, 1650
    1 http://syrte.obspm.fr/jsr/journees2010/pdf/Hilton.pdf
    2 Os?owski et al.(2011)suggest that this phenomenon should be termed Stochastic Wideband Impulse Modulated Self-noise(SWIMS).
    3 The Xinjiang Qitai 110 m Radio Telescope(QTT)has been funded and will be a fully-steerable single-dish telescope that will operate over a large frequency range. It is not clear which telescopes in the Northern Hemisphere will still be operating in the FAST-era, but it is likely that a large number of 100-m class telescopes(in Europe, China and North America)will continue to observe pulsars.
    4 We note that multi-path scattering effects may limit the availability of the lower part of the band for determining DM variations that can be applied to arrival times determined from the high-frequency end of the band.
    5 In this latter case a large telescope such as FAST is not needed and identical results could be obtained from a smaller telescope.
    6 The mean duty cycle for the pulsars currently observed for the IPTA is 0.09. However the standard deviation is 0.07.
    7 For completeness we note that the pulsar with the smallest flux density in the figure is PSR J1911+1347. This was discovered in the Parkes multibeam survey(Faulkner et al. 2004)and has a flux density significantly lower than the nominal sensitivity of that survey.
    8 The PPTA team is finding it useful to have multiple backends recording the same data. This enables determination of instrumental effects that are otherwise hard to identify.
    9 http://www.atnf.csiro.au/research/pulsar/index.html?n=Main.Psrfits
    10 In contrast pulsar surveys are suited to citizen science projects. See,for example, the Einstein@Home project; Knispel et al.(2010).