用户名: 密码: 验证码:
金属离子替换的有机-无机钙钛矿太阳能电池及其迟滞现象
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Metal-substituted organic-inorganic perovskite photovoltaic device performance and hysteresis behavior
  • 作者:叶枫叶 ; 王成 ; 赖君奇 ; 陈琪 ; 陈立桅
  • 英文作者:Fengye Ye;Cheng Wang;Junqi Lai;Qi Chen;Liwei Chen;Department of Chemistry, University of Science and Technology of China;i-Lab, Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences;School of Physical Science and Technology, ShanghaiTech University;School of Nano Technology and Nano Bionics, University of Science and Technology of China;In-situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University;
  • 关键词:有机-无机钙钛矿太阳能电池 ; 金属离子替换 ; 平面异质结 ; 异常迟滞现象 ; 离子迁移 ; 扫描开尔文探针显微镜
  • 英文关键词:organic-inorganic perovskite solar cells;;metal substitution;;planar heterojunction;;hysteresis;;ion migration;;scanning Kelvin probe microscopy
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:中国科学技术大学化学系;中国科学院苏州纳米技术与纳米仿生研究所国际实验室中国科学院纳米科学卓越创新中心;上海科技大学物质科学与技术学院;中国科学技术大学纳米技术与纳米仿生学院;上海交通大学化学化工学院物质科学原位中心;
  • 出版日期:2019-03-15 17:16
  • 出版单位:科学通报
  • 年:2019
  • 期:v.64
  • 基金:国家重点研发计划(2016YFA0200703);; 国家自然科学基金(21625304,21875280,11504408,51473184);; 中国科学院科研装备研制项目(YZ201654)资助
  • 语种:中文;
  • 页:KXTB201910012
  • 页数:10
  • CN:10
  • ISSN:11-1784/N
  • 分类号:109-118
摘要
注入金属离子替换有机-无机钙钛矿中参与成键的Pb~(2+)可以有效调控其结晶动力学、薄膜形貌和光电特性,因此,通过优化Pb~(2+)替换比例提高钙钛矿太阳能电池性能是当前的研究热点之一.但是, Pb~(2+)替换对器件异常迟滞现象的影响却缺乏深入的研究.本文采用Cd~(2+)替换的MAPbI_3为模型体系,研究了不同Cd~(2+)浓度下MAPbI_3材料性质及其平面异质结光伏器件(结构为ITO/NiO_x/Cd-MAPbI_3/PCBM/Ag)性能的变化趋势.研究结果表明,优化比例(0.5%)的Cd~(2+)可以有效增强材料结晶性、改善薄膜形貌,降低非辐射复合,提高光生载流子寿命,从而大幅提高器件性能.而Cd~(2+)替换比例过高(>2.5%)时,钙钛矿薄膜中不仅会出现相分离阻碍电荷传输,而且其非辐射复合加剧,光生载流子寿命降低,最终导致器件性能下降.与此同时,过量的Cd~(2+)注入还会引起严重的迟滞现象,利用扫描开尔文探针显微镜(SKPM)证实这一现象与钙钛矿薄膜中显著的离子迁移有关.
        Due to long carrier diffusion length,high defect tolerance and adjustable absorption spectra,organic-inorganic perovskite with chemical formula of ABX_3(A=CH_3NH_3(MA) or HC(NH_2)_2(FA);M=Pb;X=Cl,Br,I) is one of the most promising candidates for low-cost solar energy harvesting.The power conversion efficiency(PCE) of the perovskite solar cells has experienced skyrocket increasing from 3.8% to over 23% in just 10 years after they showed up,which has already outperformed than that of multicrystalline Si.Based on ab initio calculation,it demonstrates that Pb~(2+),taking part in bonding,is one of the most important factors that determines the crystallization,energy level,charge carrier dynamics as well as film morphology.Thus,a large number of metal ions have been reported to partial substitute Pb~(2+),including isovalent substitution(Sn~(2+),Sr~(2+),Cd~(2+),Ca~(2+),Mn~(2+),Fe~(2+),Co~(2+),Ni~(2+),Cu~(2+),Ba~(2+),Zn~(2+),Se~(2+) and Eu~(2+),etc.)and anisovalent substitution(Cu~+,Na~+,Ag~+,In~(3+),Sb~(3+),Al~(3+) and Bi~(3+),etc.),which improved perovskite properties and device performance significantly.However,the effects of Pb~(2+) substitution on the anomalous hysteresis of perovskite solar cells have not been fully explored yet.In this manuscript,isovalent Cd~(2+) substituted MAPbI_3 was employed as the model system,which excluded the interference of halogen ion defect formation if Pb~(2+) was substituted by isovalent metal ions.It is found that the crystallinity,morphology and photogenerated charge carrier dynamics of MAPbI_3 were tuned with different concentrations of Cd~(2+).When the concentration of Cd~(2+) increased from 0% to 0.5%,the crystallinity and the morphology of perovskite films improved significantly,resulting suppressed non-radiative recombination and increased photogenerated charge carrier lifetime.The PCE of planar heterojunction photovoltaic devices with structure of ITO/NiO_x/Cd-MAPbI_3/PCBM/Ag enhanced from 15.4% to 17.0%.Importantly,there is negligible hysteresis between forward and reverse current density-voltage(J-V)scan at different scan rate of 0.01,0.1 and 1.0 V/s.By further increasing concentration of Cd~(2+)from 1.0% to 5.0%,the crystallinity of perovskite films deteriorated gradually,leading to higher non-radiative recombination and lower photogenerated charge carrier lifetime.The morphology of perovskite films also became worse,i.e.,generated insulate phases and pin-holes,which prohibited charge transport.Even worse,incorporating high concentration of Cd~(2+)(2.5%-5.0%) not only deteriorated the device performance,but also led to serious hysteresis between forward and reverse J-V scan.In order to further understand the hysteresis behavior under high concentration of Cd~(2+),two-pass scanning Kelvin probe microscopy(SKPM) with additional DC bias(V_(bias)) applied in the first-pass topography scan have been employed.It is found that the average surface potential(SP) of the perovskite did not change with V_(bias) under Cd~(2+) concentration of 0% and 0.5%.Interestingly,the average SP of the perovskite changed significantly with V_(bias) under Cd~(2+) concentration of 5.0%,indicating significant ion migration and accumulation.Our work provides a promising way to understand the device performance and hysteresis behavior in metal-substituted perovskite,which benefits the development of perovskite photovoltaic devices,light-emitting diodes,photodetectors etc.with metal ions engineering in future.
引文
1 Stranks S D,Eperon G E,Grancini G,et al.Electron-hole diffusion lengths exceeding 1μm in an organometal trihalide perovskite absorber.Science,2013,342:341-344
    2 Dong Q,Fang Y,Shao Y,et al.Electron-hole diffusion lengths>175μm in solution-grown CH3NH3PbI3single crystals.Science,2015,347:967-970
    3 Yin W J,Shi T,Yan Y.Unique properties of halide perovskites as possible origins of the superior solar cell performance.Adv Mater,2014,26:4653-4658
    4 Protesescu L,Yakunin S,Bodnarchuk M I,et al.Nanocrystals of cesium lead halide perovskites(CsPbX3,X=Cl,Br,and I):Novel optoelectronic materials showing bright emission with wide color gamut.Nano Lett,2015,15:3692-3696
    5 Kojima A,Teshima K,Shirai Y,et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.J Am Chem Soc,2009,131:6050-6051
    6 Liu M,Johnston M B,Snaith H J.Efficient planar heterojunction perovskite solar cells by vapour deposition.Nature,2013,501:395-398
    7 Chen Q,Zhou H,Hong Z,et al.Planar heterojunction perovskite solar cells via vapor-assisted solution process.J Am Chem Soc,2014,136:622-625
    8 Jeon N J,Noh J H,Kim Y C,et al.Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells.Nat Mater,2014,13:897-903
    9 Chen L,Tang F,Wang Y,et al.Facile preparation of organometallic perovskite films and high-efficiency solar cells using solid-state chemistry.Nano Res,2015,8:263-270
    10 Chen W,Wu Y,Yue Y,et al.Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers.Science,2015,350:944-948
    11 Yang Y M,Chen Q,Hsieh Y T,et al.Multilayer transparent top electrode for solution processed perovskite/Cu(In,Ga)(Se,S)2four terminal tandem solar cells.ACS Nano,2015,9:7714-7721
    12 Wang Z K,Gong X,Li M,et al.Induced crystallization of perovskites by a perylene underlayer for high-performance solar cells.ACS Nano,2016,10:5479-5489
    13 Li Z A,Zhu Z,Chueh C C,et al.Rational design of dipolar chromophore as an efficient dopant-free hole-transporting material for perovskite solar cells.J Am Chem Soc,2016,138:11833-11839
    14 Jiang Q,Zhang L Q,Wang H L,et al.Enhanced electron extraction using SnO2high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells.Nat Energy,2016,2:1-7
    15 Li Z,Zhu Z,Chueh C C,et al.Facile thiol-ene thermal crosslinking reaction facilitated hole-transporting layer for highly efficient and stable perovskite solar cells.Adv Energy Mater,2016,6:1601165
    16 Wu Y,Yang X,Chen W,et al.Perovskite solar cells with 18.21%efficiency and area over 1 cm2fabricated by heterojunction engineering.Nat Energy,2016,1:16148
    17 Chen H,Ye F,Tang W T,et al.A solvent-and vacuum-free route to large-area perovskite films for efficient solar modules.Nature,2017,550:92-95
    18 Wu C C,Sun W H,Chen Z J,et al.Large-area thin film deposition technologies for fabricating hybrid perovskite solar cells(in Chinese).Chin Sci Bull,2017,62:1457-1463[吴存存,孙伟海,陈志坚,等.钙钛矿太阳能电池的大面积成膜方法.科学通报,2017,62:1457-1462]
    19 Li Y Q,Zhu N,Liu G H,et al.Perovskite solar cells fabricated by flash method(in Chinese).Chin Sci Bull,2018,63:2167-2172[李英强,朱宁,刘罡宏,等.基于闪蒸法制备平面钙钛矿光伏器件.科学通报,2018,63:2167-2172]
    20 Xu G,Xue R,Chen W,et al.New strategy for two-step sequential deposition:incorporation of hydrophilic fullerene in second precursor for highperformance p-i-n planar perovskite solar cells.Adv Energy Mater,2018,8:1703054
    21 Zhu Z,Zhao D,Chueh C C,et al.Highly efficient and stable perovskite solar cells enabled by all-crosslinked charge-transporting layers.Joule,2018,2:168-183
    22 Wang P,Jiang Q,Zhao Y,et al.Synergistic improvement of perovskite film quality for efficient solar cells via multiple chloride salt additives.Sci Bull,2018,63:726-731
    23 Mosconi E,Amat A,Nazeeruddin M K,et al.First-principles modeling of mixed halide organometal perovskites for photovoltaic applications.JPhys Chem C,2013,117:13902-13913
    24 Umari P,Mosconi E,De Angelis F.Relativistic GW calculations on CH3NH3PbI3and CH3NH3SnI3perovskites for solar cell applications.Sci Rep,2014,4:4467
    25 Rajagopal A,Liang P W,Chueh C C,et al.Defect passivation via a graded fullerene heterojunction in low-bandgap Pb-Sn binary perovskite photovoltaics.ACS Energy Lett,2017,2:2531-2539
    26 Xu G,Bi P,Wang S,et al.Integrating ultrathin bulk-heterojunction organic semiconductor intermediary for high-performance low-bandgap perovskite solar cells with low energy loss.Adv Funct Mater,2018,28:1804427
    27 Lyu M,Zhang M,Cooling N A,et al.Highly compact and uniform CH3NH3Sn0.5Pb0.5I3films for efficient panchromatic planar perovskite solar cells.Sci Bull,2016,61:1558-1562
    28 Yang Z,Rajagopal A,Jen A K Y.Ideal bandgap organic-inorganic hybrid perovskite solar cells.Adv Mater,2017,29:1704418
    29 Pérez-Del-Rey D,Forgács D,Hutter E M,et al.Strontium insertion in methylammonium lead iodide:Long charge carrier lifetime and high fillfactor solar cells.Adv Mater,2016,28:9839-9845
    30 Williams S T,Rajagopal A,Jo S B,et al.Realizing a new class of hybrid organic-inorganic multifunctional perovskite.J Mater Chem A,2017,5:10640-10650
    31 Jahandar M,Heo J H,Song C E,et al.Highly efficient metal halide substituted CH3NH3I(PbI2)1-x(CuBr2)xplanar perovskite solar cells.Nano Energy,2016,27:330-339
    32 Zhang H,Shang M,Zheng X,et al.Ba2+doped CH3NH3PbI3to tune the energy state and improve the performance of perovskite solar cells.Electrochim Acta,2017,254:165-171
    33 Chen R,Hou D,Lu C,et al.Zinc ion as effective film morphology controller in perovskite solar cells.Sustain Energy Fuels,2018,2:1093-1100
    34 Wu X,Li H,Wang K,et al.CH3NH3Pb1-xEuxI3mixed halide perovskite for hybrid solar cells:The impact of divalent europium doping on efficiency and stability.RSC Adv,2018,8:11095-11101
    35 Abdi-Jalebi M,Dar M I,Sadhanala A,et al.Impact of monovalent cation halide additives on the structural and optoelectronic properties of CH3NH3PbI3perovskite.Adv Energy Mater,2016,6:1502472
    36 Chen Q,Chen L,Ye F,et al.Ag-incorporated organic-inorganic perovskite films and planar heterojunction solar cells.Nano Lett,2017,17:3231-3237
    37 Wang Z K,Li M,Yang Y G,et al.High efficiency Pb-In binary metal perovskite solar cells.Adv Mater,2016,28:6695-6703
    38 Zhang J,Shang M,Wang P,et al.n-Type doping and energy states tuning in CH3NH3Pb1-xSb2x/3I3perovskite solar cells.ACS Energy Lett,2016,1:535-541
    39 Wang J T W,Wang Z,Pathak S,et al.Efficient perovskite solar cells by metal ion doping.Energy Environ Sci,2016,9:2892-2901
    40 Yun J S,Seidel J,Kim J,et al.Critical role of grain boundaries for ion migration in formamidinium and methylammonium lead halide perovskite solar cells.Adv Energy Mater,2016,6:1600330
    41 Luo D,Yang W,Wang Z,et al.Enhanced photovoltage for inverted planar heterojunction perovskite solar cells.Science,2018,360:1442-1446
    42 Lin B,Li J,Xu B,et al.Spatial positioning effect of dual cocatalysts accelerating charge transfer in three dimensionally ordered macroporous gC3N4for photocatalytic hydrogen evolution.Appl Catal B-Environ,2019,243:94-105
    43 Sanchez R S,Gonzalez-Pedro V,Lee J W,et al.Slow dynamic processes in lead halide perovskite solar cells.Characteristic times and hysteresis.JPhys Chem Lett,2014,5:2357-2363
    44 Yuan B K,Cheng P C,Zhang J,et al.Research progress in atomic resolution microscopy(in Chinese).Acta Phys-Chim Sin,2013,29:1370-1384[袁秉凯,陈鹏程,仉君,等.原子分辨显微分析技术研究进展.物理化学学报,2013,29:1370-1384]
    45 He Z,Zhong C,Huang X,et al.Simultaneous enhancement of open-circuit voltage,short-circuit current density,and fill factor in polymer solar cells.Adv Mater,2011,23:4636-4643
    46 Chen F,Chen Q,Mao L,et al.Tuning indium tin oxide work function with solution-processed alkali carbonate interfacial layers for high-efficiency inverted organic photovoltaic cells.Nanotechnology,2013,24:484011
    47 Chen Q,Mao L,Li Y,et al.Quantitative operando visualization of the energy band depth profile in solar cells.Nat Commun,2015,6:7745-7755
    48 Liu X,Lin F,Chueh C C,et al.Fluoroalkyl-substituted fullerene/perovskite heterojunction for efficient and ambient stable perovskite solar cells.Nano Energy,2016,30:417-425
    49 Zhao T,Chueh C C,Chen Q,et al.Defect passivation of organic-inorganic hybrid perovskites by diammonium iodide toward high-performance photovoltaic devices.ACS Energy Lett,2016,1:757-763
    50 Liu W,Liang T,Chen Q,et al.Solution-processed 8-hydroquinolatolithium as effective cathode interlayer for high-performance polymer solar cells.ACS Appl Mater Interfaces,2016,8:9254-9261
    51 Tang F,Chen Q,Chen L,et al.Mixture interlayer for high performance organic-inorganic perovskite photodetectors.Appl Phys Lett,2016,109:123301
    52 Chen Q,Ye F,Lai J,et al.Energy band alignment in operando inverted structure P3HT:PCBM organic solar cells.Nano Energy,2017,40:454-461
    53 Liu J C,Tang F,Ye F Y,et al.Visualization of energy band alignment in thin-film optoelectronic devices with scanning Kelvin probe microscopy(in Chinese).Acta Phys-Chim Sin,2017,33:1934-1943[刘继翀,唐峰,叶枫叶,等.利用扫描开尔文探针显微镜观察薄膜光电器件能级排布.物理化学学报,2017,33:1934-1943]
    54 Tang F,Wang C,Chen Q,et al.Improved photomultiplication in inverted-structure organic photodetectors via interfacial engineering.Appl Phys Lett,2018,113:043303
    55 Cao W,Xiang C,Yang Y,et al.Highly stable QLEDs with improved hole injection via quantum dot structure tailoring.Nat Commun,2018,9:2608
    56 Chen X,Lai J Q,Shen Y B,et al.Functional scanning force microscopy for energy nanodevices.Adv Mater,2018,30:1802490
    57 Calado P,Telford A M,Bryant D,et al.Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis.Nat Commun,2016,7:13831
    58 Eames C,Frost J M,Barnes P R F,et al.Ionic transport in hybrid lead iodide perovskite solar cells.Nat Commun,2015,6:7497-7506

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700