用户名: 密码: 验证码:
飞轮储能热管理研究现状分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on Research Status of Thermal Management of Flywheel Energy Storage System
  • 作者:陈磊 ; 王亮 ; 林曦鹏 ; 陈海生 ; 戴兴建
  • 英文作者:Chen Lei;Wang Liang;Lin Xipeng;Chen Haisheng;Dai Xingjian;Institute of Engineering Thermophysics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Tsinghua University;
  • 关键词:飞轮储能 ; 热管理 ; 电机 ; 电磁轴承 ; 散热 ; 强化换热 ; 真空环境
  • 英文关键词:flywheel energy storage;;thermal management;;motor;;electromagnetic bearing;;heat dissipation;;heat transfer enhancement;;vacuum environment
  • 中文刊名:SYZW
  • 英文刊名:Sino-Global Energy
  • 机构:中国科学院工程热物理研究所;中国科学院大学;清华大学;
  • 出版日期:2019-02-15
  • 出版单位:中外能源
  • 年:2019
  • 期:v.24
  • 基金:国家重点研发计划项目“MW级先进飞轮储能关键技术研究”(编号:2018YFB0905500);; 中国科学院国际合作局“大规模储能技术研发与示范国际合作计划”项目(编号:182211KYSB20170029);中国科学院仪器设备研制项目“大规模储热系统控制与检测装置研制”(编号:YJKYYQ20170005);; 英国皇家学会牛顿高级学者项目Investigation on key fundamental scientific problemsof advanced compressed air energy storage system(编号:NA170093)
  • 语种:中文;
  • 页:SYZW201902014
  • 页数:8
  • CN:02
  • ISSN:11-5438/TK
  • 分类号:89-96
摘要
飞轮储能可广泛应用于不间断电源、可再生能源并网、电力调峰调频、轨道交通和航空航天等领域。在真空环境下,电机及电磁轴承的散热问题关系到飞轮储能系统是否能够安全运行,是飞轮储能技术发展中亟待解决的关键科学技术问题,针对飞轮储能系统热管理的研究具有重要意义。飞轮储能系统发热主要由电机和电磁轴承引起,电机发热主要来自定子铁心铁损、绕组铜损及转子涡流损耗,电磁轴承发热主要由铁损和铜损构成。转子涡流损耗的分析是准确预测飞轮储能系统发热的基础。电机定子冷却手段主要有风冷、水冷、油冷、热管冷却以及相变冷却等,电机转子冷却手段主要有填充惰性气体增强对流换热、轴孔内油冷、扩展表面强化辐射换热等。目前高速飞轮储能系统采用的轴承主要有电磁轴承和高温超导磁悬浮轴承,传统电磁轴承的主要冷却方式是水冷,高温超导磁悬浮轴承的主要冷却方式是填充低压氦气。系统转子散热是飞轮储能系统热管理的难点,在转子散热技术方案设计中,需要考虑冷却流体挥发、密封和腐蚀问题,以及高黏度冷却流体随转子转动过程中的发热和动能损失问题。转子散热可行的解决方案主要有填充低温惰性气体以强化转子对流换热、电机低损耗设计以消除高频激波以及真空油冷等。
        Flywheel energy storage can be widely used in the fields of uninterrupted power supply,renewable energy generation,peak shaving and frequency modulation of power system,rail transit and aerospace.In vacuum environment,the thermal dissipation of motor and electromagnetic bearing affects the safe operation of fly-wheel energy storage system,so it is a key problem of science and technology to be solved urgently in the development of flywheel energy storage technology,and the research on the thermal management of flywheel energy storage system is of great significance.The heating of flywheel energy storage system is mainly caused by the motor and the electromagnetic bearing.The heating of the motor mainly comes from the iron loss of stator core,the copper loss of winding and the eddy current loss of rotor.The heating of the electromagnetic bearing is mainly resulted by iron loss and copper loss.The analysis on eddy current loss of rotor is the ba-sis for accurately predicting the heating of flywheel energy storage system.The cooling methods for motor sta-tor mainly include air cooling,water cooling,oil cooling,heat pipe cooling and phase change cooling,while the cooling methods for motor rotor mainly include filling inert gas to enhance convective heat transfer,the oil cooling in shaft hole and the extended surface to enhance radiation heat transfer.At present,the bearings used in high-speed flywheel energy storage system mainly include electromagnetic bearing and high-temperature superconducting magnetic bearing.Water cooling is mainly adopted for traditional electromagnetic bearing,while filling low-pressure helium is adopted for high-temperature superconducting magnetic bearing.The thermal dis-sipation of system rotor is the difficulty of the thermal management of flywheel energy storage system.In the thermal dissipation design of rotor,it is necessary to consider the volatilization,sealing and corrosion problems of cooling fluids as well as the heating and kinetic energy loss problems of high viscosity cooling fluids as the rotor rotates.The feasible solutions for the thermal dissipation of rotor mainly include filling low-tempera-ture inert gas to enhance the convective heat transfer of rotor,the low-loss design of motor to eliminate high frequency shock wave and the vacuum oil cooling.
引文
[1]刘英军,刘畅,王伟,等.储能发展现状与趋势分析[J].中外能源,2017,22(4):80-88.
    [2]RIES G,NEUMUELLER H W.Comparison of Energy Storage in Flywheels and SMES[J].Physica C:Superconductivity,2001,357-360:1306-1310.
    [3]戴兴建,魏鲲鹏,张小章,等.飞轮储能技术研究五十年评述[J].储能科学与技术,2018,7(5):765-782.
    [4]杨立平,任正义,韩永杰,等.飞轮储能系统能量损失研究现状分析[J].机械设计与制造,2013(5):109-112.
    [5]杨志轶.飞轮电池储能关键技术研究[D].合肥:合肥工业大学,2002.
    [6]王健,戴兴建,李奕良.飞轮储能系统轴承技术研究新进展[J].机械工程师,2008(4):71-73.
    [7]唐长亮,张小虎,孟祥梁.国外飞轮储能技术状况研究[J].中外能源,2018,23(6):82-86.
    [8]马骏毅,巴宇,赵伟,等.飞轮储能的关键技术分析及研究状况[J].智能电网,2017,5(1):9-16.
    [9]李允超,宋华伟,马洪涛,等.储能技术发展现状研究[J].发电与空调,2017,38(4):56-61.
    [10]孔玉明,王志清.储能技术的发展现状与展望[J].吉林水利,2018(10):57-58,62.
    [11]储江伟,张新宾.飞轮储能系统关键技术分析及应用现状[J].能源工程,2014(6):63-67,72.
    [12]MOUSAVI G S M,FARAJI F,MAJAZI A,et al.A Comprehensive Review of Flywheel Energy Storage System Technology[J].Renewable and Sustainable Energy Reviews,2017,67:477-490.
    [13]张新宾,储江伟,李洪亮,等.飞轮储能系统关键技术及其研究现状[J].储能科学与技术,2015,4(1):55-60.
    [14]汪勇,戴兴建,孙清德.基于有限元的金属飞轮结构设计优化[J].储能科学与技术,2015,4(3):267-272.
    [15]刘文军,唐西胜,周龙,等.基于背靠背双PWM变流器的飞轮储能系统并网控制方法研究[J].电工技术学报,2015,30(16):120-128.
    [16]RANTA M A.On the Optimum Shape of A Rotating Disk of Any Isotropic Materials[J].International Journal of Solids Structures,1969,5(11):1247-1257.
    [17]DETERESA S J.Materials for Advanced Flywheel Energy-Storage Devices[J].MRS Bulletin,1999,24(11):51-56.
    [18]戴兴建,张小章,姜新建,等.清华大学飞轮储能技术研究概况[J].储能科学与技术,2012,1(1):64-68.
    [19]SOTELO G G,DE ANDRADE R,FERREIRA A C.Magnetic Bearing Sets for a Flywheel System[J].IEEE Transactions on Applied Superconductivity,2007,17(2):2150-2153.
    [20]邓自刚,王家素,王素玉,等.高温超导磁悬浮轴承研发现状[J].电工技术学报,2009,24(9):1-8.
    [21]余志强,张国民,邱清泉,等.高温超导飞轮储能系统的发展现状[J].电工技术学报,2013,28(12):109-118.
    [22]李万杰,张国民,艾立旺,等.高温超导飞轮储能系统研究现状[J].电工电能新技术,2017,36(10):19-31.
    [23]MUKOYAMA S,NAKAO K,SAKAMOTO H,et al.Development of Superconducting Magnetic Bearing for 300kW Flywheel Energy Storage System[J].IEEE Transactions on Applied Superconductivity,2017,27(4):1-4.
    [24]于亚新.双Y移30°六相永磁同步电机控制技术研究[D].哈尔滨:哈尔滨工业大学,2015.
    [25]廖民.带整流负载时六相双丫移30°绕组同步发电机电枢磁势和转子表面附加损耗的分析[J].大电机技术,1990(4):1-8.
    [26]肖林元.新型六相轴向磁通永磁同步电机的特性研究[D].武汉:华中科技大学,2016.
    [27]谭博,张海涛,华志广,等.一种减小无刷直流电机转子涡流损耗以及铜耗的驱动方法[J].电工技术学报,2018,33(18):4239-4248.
    [28]BORNEMANN H J,SANDER M.Conceptual System Design of a 5MWh/100MW Superconducting Flywheel Energy Storage Plant for Power Utility Applications[J].IEEE Transactions on Applied Superconductivity,1997,7(2):398-401.
    [29]冯奕,林鹤云,颜建虎,等.基于机械轴承飞轮储能系统损耗的构成分析[J].东南大学学报:自然科学版,2013,43(1):71-75.
    [30]BOLUND B,BERNHOFF H,LEIJON M.Flywheel Energy and Power Storage Systems[J].Renewable Sustainable Energy Reviews,2007,11(2):235-258.
    [31]KOMEZA K,LOPEZ-FERNANDEZ X M,LEFIK M.Computer Modelling of 3D Transient Thermal Field Coupled with Electromagnetic Dield in Three-phase Induction Motor on Load[J].Compel International Journal for omputation Mathematics in Electrical Electronic Engineering,2010,29(4):974-983.
    [33]NIKITINA L.Modeling of Motor-Spindel Thermal Values[J].Procedia Engineering,2017,206:1316-1320.
    [32]于明湖,张玉秋,乔正忠,等.永磁同步电机损耗分离方法研究[J].微特电机,2015,43(8):14-18.
    [34]UHLMANN E,HU J.Thermal Modelling of a High Speed Motor Spindle[J].Procedia Cirp,2012,1(1):313-318.
    [35]陈夺,冯明.电磁结构对高速永磁电机转子涡流损耗的影响[J].微电机,2015,48(2):11-15.
    [36]张德金,熊万里,吕浪,等.高速大功率永磁同步电机转子涡流损耗分析[J].计算机仿真,2017,34(1):236-240.
    [37]LEE J P,PARK B J,HAN Y H,et al.Energy Loss by Drag Force of Superconductor Flywheel Energy Storage System With Permanent Magnet Rotor[J].IEEE Transactions on Magnetics,2008,44(11):4397-4400.
    [38]李新生,杨作兴,赵雷,等.轴向电磁轴承发热问题研究[J].清华大学学报,2002,42(8):1015-1018.
    [39]BELLETTRE J,SARTRE V,BIAIS F,et al.Transient State Study of Electric Motor Heating and Phase Change Solid-liquid Cooling[J].Applied Thermal Engineering,1997,17(1):17-31.
    [40]WANG S,LI Y,LI Y Z,et al.Transient Cooling Effect Analyses for a Permanent-magnet Synchronous Motor with Phasechange-material Packaging[J].Applied Thermal Engineering,2016,109:251-260.
    [41]PUTRA N,ARIANTARA B.Electric Motor Thermal Management System Using L-shaped Flat Heat Pipes[J].Applied Thermal Engineering,2017,126:1156-1163.
    [42]王晓远,杜静娟.CFD分析车用电机螺旋水路的散热特性[J].电工技术学报,2018,33(4):955-963.
    [43]CHIU H C,JANG J H,YAN W M,et al.Thermal Performance Analysis of a 30kW Switched Reluctance Motor[J].International Journal of Heat Mass Transfer,2017,114:145-154.
    [44]王淑旺,高月仙,谭立真.永磁同步电机温度场分析与水道结构优化[J].电机与控制应用,2016,43(7):51-56.
    [45]丁杰,张平.永磁同步电机的冷却结构优化设计及温度场仿真[J].微特电机,2016,44(6):31-34.
    [46]佟文明,程雪斌.高速水冷永磁电机冷却系统分析[J].电机与控制应用,2016,43(3):16-21.
    [47]LEE K H,CHA H R,KIM Y B.Development of an Interior Permanent Magnet Motor Through Rotor Cooling for Electric Vehicles[J].Applied Thermal Engineering,2016,95:348-356.
    [48]杨学威,张小发.电机壳体Z字型冷却水道设计[J].电机与控制应用,2016,43(9):62-65.
    [49]LIM D H,KIM S C.Thermal Performance of Oil Spray Cooling System for In-wheel Motor in Electric Vehicles[J].Applied Thermal Engineering,2014,63(2):577-587.
    [50]DAVIN T,PELLE J,HARMAND S,et al.Experimental Study of Oil Cooling Systems for Electric Motors[J].Applied Thermal Engineering,2015,75:1-13.
    [51]JUNG S,LEE J,PARK B,et al.Double-Evaporator Thermosiphon for Cooling 100kWh Class Superconductor Flywheel Energy Storage System Bearings[J].IEEE Transactions on Applied Superconductivity,2009,19(3):2103-2106.
    [52]LI Fajing,GAO Jianmin,SHI Xiaojun,et al.Experimental Investigation of Single Loop Thermosyphons Utilized in Motorized Spindle Shaft Cooling[J].Applied Thermal Engineering,2018,134:229-237.
    [53]HASSETT T,HODOWANEC M.Electric Motor with Heat Pipes[P].US:8134260 B2,2012-03-12.
    [54]FEDOSEYEV L,PEARCE E M.Rotor Assembly with Heat Pipe Cooling System[P].US:9331552 B2,2016-05-03.
    [55]VELTRI J A,MACNEIL C,LAMPE A.Cooled Flywheel Apparatus[P].US:2014067018 A1,2014-08-05.
    [56]ARSENEAUX J,ANSBIGIAN D,DESANTIS D,et al.Self-pumping Flywheel Cooling System[P].US:20170009845 A1,2017-01-12.
    [57]SUZUKI Y,KOYANAGI A,KOBAYASHI M,et al.Novel Applications of the Flywheel Energy Storage System[J].Energy,2005,30(11/12):2128-2143.
    [58]APEN A,YAMAGATA K,KOBUCHI J,et al.Study of Cooling Gases for Windage Loss Reduction[J].IEEJ Transactions on Power and Energy,2000,120(3):478-483.
    [59]YUKI A,MASARU N,HITOSHI H,et al.Non-contact Unit Cooling Device by Radiation of Flywheel for Power Storage[P].Japan:2010037110,2011-08-09.
    [60]李慧敏,汪希萱.磁悬浮轴承的研究现状和发展趋势[J].轴承,2003(6):50-52.
    [61]COOMBS T A,CAMPBELL A,STOREY R,et al.Superconducting Magnetic Bearings for Energy Storage Flywheels[J].IEEE Transactions on Applied Superconductivity,1999,9(2):968-971.
    [62]MIYAZAKI Y,MIZUNO K,YAMASHITA T,et al.Development of Superconducting Magnetic Bearing for Flywheel Energy Storage System[J].Cryogenics,2016,80(4):234-237.
    [63]STRASIK M,HULL J R,MITTLEIDER J A,et al.An Overview of Boeing Flywheel Energy Storage Systems with High-temperature Superconducting Bearings[J].Superconductor Science Technology,2010,23(3).
    [64]ARAI Y,YAMASHITA T,HASEGAWA H,et al.Eddy Current Analysis and Optimization for Superconducting Magnetic Bearing of Flywheel Energy Storage System[J].Physics Procedia,2015,65:291-294.
    [65]DE WAELE A,OSWALD B,REIS T,et al.Capillary Cooling of Superconducting Coils with Two-phase Hydrogen or Nitrogen[J].Cryogenics,2017,84:29-36.
    [66]曾励,陈飞,宋爱平,等.动力磁悬浮轴承的研究现状及关键技术[J].中国机械工程,2001,12(11):1319-1322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700