用户名: 密码: 验证码:
化玉米秸秆生物炭对碱性农田土壤氨氧化作用的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Aged Maize Straw-derived Biochars on Ammonia Oxidation in An Alkaline Farmland Soil
  • 作者:王朝旭 ; 陈绍荣 ; 张峰 ; 崔建国 ; 李红艳
  • 英文作者:WANG Chaoxu;CHEN Shaorong;ZHANG Feng;CUI Jianguo;LI Hongyan;College of Environmental Science and Engineering, Taiyuan University of Technology;Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province;
  • 关键词:生物炭 ; 老化 ; 氨氧化速率 ; 氨氧化细菌
  • 英文关键词:biochar;;aging;;ammonia oxidation rate;;ammonia-oxidizing bacteria
  • 中文刊名:TRYJ
  • 英文刊名:Ecology and Environmental Sciences
  • 机构:太原理工大学环境科学与工程学院;山西省市政工程研究生教育创新中心;
  • 出版日期:2018-01-18
  • 出版单位:生态环境学报
  • 年:2018
  • 期:v.27
  • 基金:国家自然科学基金项目(41503074;51408397);; 山西省自然科学基金项目(2015011081);; 城市水资源与水环境国家重点实验室(哈尔滨工业大学)开放基金项目(QA201519);; 太原理工大学校基金面上项目(2015MS031)
  • 语种:中文;
  • 页:TRYJ201801005
  • 页数:9
  • CN:01
  • ISSN:44-1661/X
  • 分类号:35-43
摘要
为探明老化(自然老化、高温老化、冻融循环老化)玉米秸秆生物炭对黄土高原碱性农田土壤氨氧化作用的影响,以玉米秸秆粉末和新鲜玉米秸秆生物炭为对照,在分析不同材料基本特性的基础上,将其按2%(质量比)与土壤充分混匀,开展为期85 d的室内静态土壤培养实验,研究土壤氨氧化速率、氨氧化细菌数量、无机氮含量和p H的动态变化。结果表明,将玉米秸秆400℃热解制成生物炭后,其p H增大4;与新鲜玉米秸秆生物炭相比,老化作用(自然老化、高温老化和冻融循环老化)使生物炭的p H分别降低0.30、0.50和0.99,表面羧基数量分别增加0.031、0.236和0.376 mmol·g~(-1),比表面积分别增大3.43、2.19和0.99 m~2·g~(-1)。室内培养实验表明,碱性农田土壤的氨氧化作用主要源自微生物氧化。土壤培养1周以后(稳定期),同一采样时间点,与玉米秸秆粉末和新鲜玉米秸秆生物炭相比,自然老化、高温老化和冻融循环老化玉米秸秆生物炭均提高了土壤的氨氧化速率(分别介于95.4~138.1、112.6~152.0和137.8~167.8 nmol·g~(-1)·h~(-1))和氨氧化细菌数量(分别介于3.16×10~5~6.65×10~5、3.55×10~5~7.06×10~5和3.35×10~5~8.01×10~5 g~(-1)),促进程度表现为冻融循环老化生物炭>高温老化生物炭>自然老化生物炭。在整个培养过程中,各处理土壤NH_4~+-N含量随培养时间延长呈降低趋势,NO_3~--N和NO_2~--N含量呈增加趋势。该研究有助于加深理解老化玉米秸秆生物炭还田对碱性农田土壤氨氧化作用的影响,对土壤氮肥生物有效性的提高有指导意义,可为生物炭在黄土高原地区的农业工程应用提供理论借鉴。
        The object of this study was to explore the effects of three types of aged maize straw-derived biochars(including spontaneous aging,high-temperature aging,and freeze-thaw cycles aging)on ammonia oxidation in a typical Loess Plateau alkaline farmland soil.The controls were maize-straw powder and fresh maize straw-derived biochar.The indoor static soil incubation experiment was carried out for 85 days after adding and evenly mixing 2%(in mass)of abovementioned materials into and with the soil sample with an aim to investigate the dynamic changes of ammonia oxidation rate,ammonia-oxidizing bacteria(AOB)amount,inorganic nitrogen content,and pH of the soils.The results showed that the pyrolysis of maize straw into biochar at the temperature of 400℃increased pH by 4.Compared with the fresh maize straw-derived biochar,the pH value of the aged biochars produced from spontaneous aging,high-temperature aging,and freeze-thaw cycles aging decreased 0.30,0.50,and 0.99,respectively,carboxyl amount increased 0.031,0.236,and 0.376 mmol·g~(-1),respectively,and the specific surface area increased 3.43,2.19,and 0.99 m~2·g~(-1),respectively.The incubation experiment indicated that ammonia oxidation of the alkaline farmland soil mainly stemmed from biotic processes.After one-week incubation,the ammonia oxidation rates of the soils amended with spontaneous aging,high-temperature aging,and freeze-thaw cycles aging biochar were obviously promoted compared to the controls.Their ranges were 95.4~138.1,112.6~152.0,and 137.8~167.8 nmol·g~(-1)·h~(-1),respectively.AOB amounts in the soils with three different aged biochars were also markedly elevated,which were in the ranges of 3.16×10~5~6.65×10~5,3.55×10~5~7.06×10~5,and 3.35×10~5~8.01×10~5 g~(-1) dry soil,respectively.Overall,NH_4~+-N in the soils decreased in the period of the incubation while NO_3~--N and NO_2~--N displayed opposite changing patterns.This study will be helpful for understanding the effects of returning aged maize straw-derived biochars back to farmland on soil ammonia oxidation,and will be meaningful for improving the effectiveness of soil nitrogen bio-availability.The study will provide a theoretical reference for the agricultural application of biochar in farmland soils of Loess Plateau.
引文
ASADA T,OHKUBO T,KAWATA K,et al.2006.Ammonia adsorption on bamboo charcoal with acid treatment[J].Journal of Health Science,52(5):585-589.
    ATKINSON C J,FITZGERALD J D,HIPPS N A.2010.Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils:a review[J].Plant and Soil,337(1):1-18.
    BOOTH M S,STARK J M,RASTETTER E.2005.Controls on nitrogen cycling in terrestrial ecosystems:a synthetic analysis of literature data[J].Ecological Monographs,75(2):139-157.
    CHENG C,LEHMANN J.2009.Ageing of black carbon along a temperature gradient[J].Chemosphere,75(8):1021-1027.
    CHENG C,LEHMANN J,ENGELHARD M H.2008.Natural oxidation of black carbon in soils:Changes in molecular form and surface charge along a climosequence[J].Geochimica et Cosmochimica Acta,72(6):1598-1610.
    CHENG Y,CAI Z C,CHANG S X,et al.2012.Wheat straw and its biochar have contrasting effects on inorganic N retention and N2O production in a cultivated Black Chernozem[J].Biology and Fertility of Soils,48(8):941-946.
    DELUCA T H,MACKENZIE M D,GUNDALE M J,et al.2006.Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests[J].Soil Science Society of America Journal,70(2):448-453.
    ESFANDBOD M,PHILLIPS I R,MILLER B,et al.2017.Aged acidic biochar increases nitrogen retention and decreases ammonia volatilization in alkaline bauxite residue sand[J].Ecological Engineering,98:157-165.
    HE L,LIU Y,ZHAO J,et al.2016a.Comparison of straw-biochar-mediated changes in nitrification and ammonia oxidizers in agricultural oxisols and cambosols[J].Biology and Fertility of Soils,52:137-149.
    HE L,ZHAO X,WANG S,et al.2016b.The effects of rice-straw biochar addition on nitrification activity and nitrous oxide emissions in two Oxisols[J].Soil&Tillage Research,164:52-62.
    JOSEPH S D,CAMPS-ARBESTAIN M,LIN Y,et al.2010.An investigation into the reactions of biochar in soil[J].Australian Journal of Soil Research,48(6-7):501-515.
    KUROLA J,SALKINOJA-SALONEN M,AARNIO T,et al.2005.Activity,diversity and population size of ammonia-oxidising bacteria in oil-contaminated landfarming soil[J].FEMS Microbiology Letters,250(1):33-38.
    LECROY C,MASIELLO C A,RUDGERS J A,et al.2013.Nitrogen,biochar,and mycorrhizae:Alteration of the symbiosis and oxidation of the char surface[J].Soil Biology&Biochemistry,58:248-254.
    LEHMANN J,JOSEPH S.2009.Biochar for environmental management:science and technology(second edition)[M].London:Earthscan Publications Ltd:1-12.
    NELISSEN V,RUTTING T,HUYGENS D,et al.2012.Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil[J].Soil Biology&Biochemistry,55:20-27.
    SINGH B P,HATTON B J,SINGH B,et al.2010.Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils[J].Journal of Environmental Quality,39(4):1224-1235.
    SONG Y,ZHANG X,MA B,et al.2014.Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil[J].Biology and Fertility of Soils,50(2):321-332.
    SPOKAS K A,CANTRELL K B,NOVAK J M,et al.2012.Biochar:a synthesis of its agronomic impact beyond carbon sequestration[J].Journal of Environmental Quality,41(4):973-989.
    TRIGO C,SPOKAS K A,COX L,et al.2014.Influence of soil biochar aging on sorption of the herbicides MCPA,nicosulfuron,terbuthylazine,indaziflam,and fluoroethyldiaminotriazine[J].Journal of Agricultural and Food Chemistry,62(45):10855-10860.
    WANG Z Y,ZONG H Y,ZHENG H,et al.2015.Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar[J].Chemosphere,138:576-583.
    WOOLF D,AMONETTE J E,STREET-PERROTT F A,et al.2010.Sustainable biochar to mitigate global climate change[J].Nature Communications,DOI:10.1038/ncomms1053.
    YAO F X,ARBESTAIN M C,VIRGEL S,et al.2010.Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor[J].Chemosphere,80(7):724-732.
    ZHANG G,ZHANG Q,SUN K,et al.2011.Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures[J].Environmental Pollution,159(10):2594-2601.
    王晓辉,郭光霞,郑瑞伦,等.2013.生物炭对设施退化土壤氮相关功能微生物群落丰度的影响[J].土壤学报,50(3):624-631.
    伍孟雄,杨敏,孙雪,等.2015.生物质炭生物与非生物氧化特性研究进展[J].生态学报,35(9):2810-2818.
    汪艳如,侯杰发,郭建华,等.2017.冻融循环对牦牛粪生物炭吸附氨氮的影响[J].农业环境科学学报,36(3):566-573.
    林先贵.2010.土壤微生物研究原理与方法[M].北京:高等教育出版社:32-52.
    苗微.2014.生物炭陈化对土壤养分和水稻生长的影响[D].沈阳:沈阳农业大学:31-53.
    国家环境保护总局.2002.水和废水监测分析方法[M].第4版.北京:中国环境科学出版社.
    鞠文亮,荆延德.2017.陈化处理对棉花秸秆生物炭理化性质的影响[J].环境科学学报,37(10):3853-3861.
    陈昱,梁媛,郑章琪,等.2016.浮萍生物炭的老化作用对其性质及对Cd(II)吸附的影响[J].环境工程,34(10):60-64.
    鲁如坤.2000.土壤农业化学分析方法[M].北京:中国农业科技出版社:12-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700