用户名: 密码: 验证码:
基于脉冲远场涡流的管道缺陷外检测与定量评估
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Outside inspection and quantitative evaluation of pipe defects based on pulsed remote field eddy currents
  • 作者:徐志远 ; 肖奇
  • 英文作者:Xu Zhiyuan;Xiao Qi;School of Mechanical Engineering,Xiangtan University;Engineering Research Center for Complex Path Processing Technology and Equipment of Ministry of Education,Xiangtan University;
  • 关键词:脉冲远场涡流 ; 管道缺陷 ; 外检测 ; 定量评估 ; 有限元仿真
  • 英文关键词:pulsed remote field eddy current;;pipe defects;;outside inspection;;quantitative evaluation;;finite element simulation
  • 中文刊名:DZIY
  • 英文刊名:Journal of Electronic Measurement and Instrumentation
  • 机构:湘潭大学机械工程学院;湘潭大学复杂轨迹加工工艺及装备教育部工程研究中心;
  • 出版日期:2019-02-15
  • 出版单位:电子测量与仪器学报
  • 年:2019
  • 期:v.33;No.218
  • 基金:国家自然科学基金(51505406)资助项目
  • 语种:中文;
  • 页:DZIY201902011
  • 页数:8
  • CN:02
  • ISSN:11-2488/TN
  • 分类号:85-92
摘要
远场涡流技术用于金属管道检测时,由于对内、外壁缺陷具有相同的灵敏度,而难以有效区分缺陷位置。针对压力管线在役检测需求,提出了一种基于脉冲远场涡流的管道外检测方法,并实现了内、外管壁缺陷的深度定量和位置区分。首先根据远场涡流效应的磁场传播特点,对比分析了将传感器置于管内和管外时的检测原理;随后采用有限元仿真方法,优选了激励脉冲的重复频率和占空比等参数;然后,研究了内、外壁缺陷对磁场的扰动作用及其响应信号特征,分析了信号的峰值和过零时间与缺陷深度及位置的对应关系;最后,在实验室构建了脉冲远场涡流系统,对预制有内、外壁缺陷的碳钢管道进行了检测验证。结果表明,检测信号的峰值随管壁缺陷深度的增加单调增大,可用于缺陷的深度定量;内壁缺陷的过零时间总是大于相同深度外壁缺陷的过零时间,这一特征可用于管壁缺陷位置的识别。
        The remote field eddy current(RFEC) technique is widely applied for defect inspection in the wall of metallic pipes. However, it is difficult to identify the defect's specific location because this technique has the same sensitivity to inner diameter(ID) and outer diameter(OD) defects. To meet the demand of in-service inspection for pressure piping, this paper presents an outside inspection method based on pulsed remote field eddy current(PRFEC) for pipe defects and makes a contribution on depth quantification and location identification of ID and OD defects. First, based on the characteristic of magnetic field propagation, the principles of inside and outside RFEC inspection were compared and analyzed. Afterwards, the repetitive frequency and duty cycle of the excitation pulse were optimized by using finite element simulation. Then, the magnetic perturbations caused by ID and OD defects and their response signals were studied, and meanwhile the correlations of signal peak and time of zero-crossing(TZC) with the defect depth and location were revealed. Finally, a PRFEC system was set up and experiments were carried out on a carbon steel pipe with prefabricated ID and OD defects. The results show that: i) the peak value of defect signal increases monotonically as the defect depth increases, which can be used to quantify defect depth; ii) the signals' TZCs of ID defects are always greater than those of OD defects with the same depths, and therefore, by using this feature, the defect location can be identified.
引文
[1]KREUTZBRUCK M V,ALLWEINS K,RUHL T,et al.Defect detection and classification using a SQUID based multiple frequency eddy current NDE system[J].IEEETransactions on Applied Superconductivity,2001,11(1):1032-1037.
    [2]CHEN M J,SUN Y S.A finite element prediction of possible application of pulse excitation in remote field eddy-current nondestructive inspection devices[J].International Journal of Applied Electromagnetics and Mechanics,1991,2(3):217-220.
    [3]SUN Y,LOO W C,KUNERTH D C,et al.Finite element simulation of pulsed remote field eddy current phenomenon[C].Review of Progress in Quantitative Nondestructive Evaluation.Springer,1998:259-266.
    [4]VASIC'D,BILAS V,AMBRUS D.Pulsed eddy-current nondestructive testing of ferromagnetic tubes[J].IEEETransactions on Instrumentation and Measurement,2004,53(4):1289-1294.
    [5]DADC'M,VASIC'D,BILAS V.A system identification approach to the modelling of pulsed eddy-current systems[J].NDT&E International,2005,38(2):107-111.
    [6]徐小杰.铁磁性管道中轴向裂纹的远场涡流检测技术研究[D].长沙:国防科学技术大学,2007.XU X J.Research on remote field eddy current technique used for axial crack detection in ferromagnetic pipe[D].Changsha:National University of Defense Technology,2007.
    [7]杨理践,王赓,高松巍.基于脉冲远场涡流的管道内检测技术[J].仪表技术与传感器,2012(11):141-144.YANG L J,WANG G,GAO S W.Ferromagnetic tubes testing based pulsed remote field eddy current technique[J].Instrument Technique and Sensor,2012(11):141-144.
    [8]张芸,张伟,师奕兵,等.基于远场涡流的管道局部缺陷定量评估方法[J].仪器仪表学报,2016,37(3):623-631.ZHANG Y,ZHANG W,SHI Y B,et al.Research on local defects quantification of pipes based on RFECtesting[J].Chinese Journalof Scientific Instrument,2016,37(3):623-631.
    [9]徐志远,林章鹏,袁湘民,等.管道弯头缺陷检测外置式远场涡流探头设计[J].仪器仪表学报,2017,38(5):1119-1125.XU ZH Y,LING ZH P,YUAN X M,et al.An external remote field eddy current probe for defect detection at pipe elbows[J].Chinese Journal of Scientific Instrument,2017,38(5):1119-1125.
    [10]曲民兴,司家屯,孙雨施,等.采用复式激励的新型远场涡流探头[J].电工技术学报,1997,12(3):11-14.QU M X,SI J T,SUN Y SH,et al.Dual excitation probe in remote field eddy current testing[J].Transactions of China Electrotechnical Society,1997,12(3):11-14.
    [11]方秋华,田新启,茅佩.涡流传感器温漂补偿[J].东南大学学报,1995,25(5):47-51.FANG Q H,TIAN X Q,MAO P.Compensation of temperature drift for eddy current sensor[J].Journal of Southeast University,1995,25(5):47-51.
    [12]肖奇,徐志远,伍权.基于远场涡流的碳钢管道缺陷外检测方法[J].传感技术学报,2018,31(11):1684-1689.XIAO Q,XUAN ZH Y,WU Q.Outside inspection method for carbon steel pipe defects based on remote field eddy current[J].Chinese Journal of Sensors and Actuators,2018,31(11):1684-1689.
    [13]ANGANI C S,RAMOS H G,RIBEIRO A L,et al.Evaluation of transient eddy current oscillations response for thickness measurement of stainless steel plate[J].Measurement,2016(90):59-63.
    [14]ABIDIN I Z,MANDACHE C,TIAN G Y,et al.Pulsed eddy current testing with variable duty cycle on rivet joints[J].NDT&E International,2009,42(7):599-605.
    [15]赵莹,解社娟,张东亮,等.脉冲涡流激励信号参数对检测能力的影响[J].无损检测,2016,38(10):14-17.ZHAO Y,XIE SH J,ZHANG D L,et al.Influence of excitation parameters on detection sensitivity for PECT[J].Nondestructive Testing,2016,38(10):14-17.
    [16]伍权,徐志远,肖奇.基于Lab VIEW的脉冲涡流检测实验系统[J].测控技术,2017,36(12):123-126,136.WU Q,XU ZH Y,XIAO Q.Pulsed eddy current testing experiment system based on Lab VIEW[J].Measurement&Control Technology,2017,36(12):123-126,136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700