用户名: 密码: 验证码:
宽气压下介质阻挡放电等离子体激励器放电特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Discharge Characteristics of Dielectric Barrier Discharge Plasma Actuator at Broad Pressure Range
  • 作者:杨磊磊 ; 康磊 ; 蔡晋生
  • 英文作者:YANG Leilei;KANG Lei;CAI Jinsheng;National Key Laboratory of Aerodynamic Design and Research, Northwest Polytechnical University;
  • 关键词:介质阻挡放电 ; 宽气压 ; 放电功率 ; 光谱特性 ; 反推力 ; 诱导速度
  • 英文关键词:dielectric barrier discharge;;broad pressure;;discharge power;;spectra;;thrust;;induced velocity
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:西北工业大学翼型叶栅空气动力学国防科技重点实验室;
  • 出版日期:2019-03-20
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.316
  • 基金:国家自然科学基金(11472221)~~
  • 语种:中文;
  • 页:GDYJ201903016
  • 页数:9
  • CN:03
  • ISSN:42-1239/TM
  • 分类号:124-132
摘要
为适应飞行器在高空宽气压环境下的等离子体流动控制,基于典型构型的介质阻挡放电等离子体激励器(dielectric barrier discharge plasma actuator,DBDPA)在不同气压下的静止大气放电实验,研究了气压对DBDPA放电的起始放电电压、辉光形态、光谱特性、伏安特性、放电功率、诱导气流的时均反推力和时均速度等的影响特性。研究结果表明:随着气压的逐渐下降(从0.1 MPa降至0.02 MPa),DBDPA的起始放电电压逐渐降低(从6.4kV降至2.8 kV),放电辉光逐渐增强,辉光区域逐渐变大(从约2 mm增到15 mm);光谱特征谱线位置不变,光谱强度增加;电流幅值和微放电电流脉冲逐渐增强;放电功率单调增加,并在0.06 MPa以下阶段呈现陡增;诱导气流的时均速度整体上单调增加;而时均反推力先增加后减少,存在峰值气压,随着驱动电压峰值从12 kV增加至16 kV,峰值气压从0.04 MPa增至0.06 MPa。另外,诱导气流的时均反推力和时均速度与驱动电压和频率均成正比。在特定的低气压0.05 MPa下,DBDPA的放电功率与驱动电压成正比,而随着驱动频率的增加,放电功率先增加后减少,存在峰值频率3.5 kHz。
        In order to adopt to the broad pressure range of aircraft at high attitude under plasma flow control, based on the classical dielectric barrier discharge plasma actuator(DBDPA) and its discharge in different pressure in stationary atmospheric, we investigated the influences of pressure on the discharge onset voltage, glow pattern, spectral characteristics,V-A characteristics, discharge power, time averaged thrust, and time averaged velocity of induced flow. The results show that, as the air pressure drops from 0.1 MPa to 0.02 MPa, the onset voltage decreases gradually from 6.4 kV to 2.8 kV, the discharge glow becomes brighter and its area becomes wider(from about 2 mm to 15 mm), and the spectral intensity increases; the line position remains unchanged, the current amplitude and the peak of micro-discharge current pulseincreases; the discharge power increases monotonically and raises steeply below 0.06 MPa, the time averaged velocity of induced flow increases monotonically on the whole, while the time averaged thrust firstly increases and then declines, where a peak-value pressure exists in proportional to the driven voltage, 0.04 MPa for 12 kV and 0.06 MPa for16 kV. In addition, both of the two time averaged quantities, thrust and induced velocity, are proportional to the driven voltage and frequency respectively. At a particular low atmosphere pressure, 0.05 MPa, the discharge power is proportional to the driven voltage, but increases first and then decreases as the frequency rincreases, where a peak-value frequency of 3.5 kHz exists.
引文
[1]ROTH J R.Investigation of a uniform glow discharge plasma in atmospheric air[R].Knoxville,USA:Tennessee University Knoxville Plasma Science Lab,1995.
    [2]CORKE T C,LON ENLOE C,WILKINSON S P.Dielectric barrier discharge plasma actuators for flow control[J].Annual Review of Fluid Mechanics,2010,42:505-529.
    [3]李清泉,郝玲艳.沿面介质阻挡放电等离子体及其应用[J].高电压技术,2016,42(4):1079-1090.LI Qingquan,HAO Lingyan.Surface dielectric barrier discharge plasma and its applications[J].High Voltage Engineering,2016,42(4):1079-1090.
    [4]徐双艳,李江,蔡晋生,等.二维对称结构纳秒脉冲介质阻挡放电数值模拟[J].高电压技术,2015,41(6):2100-2107.XU Shuangyan,LI Jiang,CAI Jinsheng,et al.Modeling of the two-dimensional nanosecond SDBD discharge with symmetry electrodes[J].High Voltage Engineering,2015,41(6):2100-2107.
    [5]孟宣市,王健磊,蔡晋生,等.不同形式等离子体激励对细长体分离涡的控制[J].空气动力学学报,2013,31(5):647-651.MENG Xuanshi,WANG Jianlei,CAI Jinsheng,et al.Flow control over a slender conical forebody by different plasma actuations[J].Acta Aerodynamica Sinica,2013,31(5):647-651.
    [6]张鑫,黄勇,王勋年,等.超临界机翼介质阻挡放电等离子体流动控制[J].航空学报,2016,37(6):1733-1742.ZHANG Xin,HUANG Yong,WANG Xunnian,et al.Flow control on a supercritical wing using dielectric barrier discharge plasma actuator[J].Acta Aeronauticaet Astronautica Sinica,2016,37(6):1733-1742.
    [7]PESCINI E,MARRA F,DE GIORGI MG,et al.Investigation of the boundary layer characteristics for assessing the DBD plasma actuator control of the separated flow at low Reynolds numbers[J].Experimental Thermal and Fluid Science,2017,81:482-498.
    [8]YANG L L,LI J,CAI J SH,et al.Lift augmentation based on flap deflection with dielectric barrier discharge plasma flow control over multi-element airfoils[J].Journal of Fluids Engineering,2016,138(3):1-10.
    [9]YAO J K,ZHOU D J,HE H B,et al.Experimental investigation of lift enhancement for flying wing aircraft using nanosecond DBD plasma actuators[J].Plasma Science and Technology,2017,19:044002.
    [10]梁华,吴云,李军,等.等离子体气动激励改善增升装置气动性能的试验[J].航空学报,2016,37(8):2603-2613.LIANG Hua,WU Yun,LI Jun,et al.Test of high lift system flow control by plasma aerodynamic actuation[J].Acta Aeronautica et Astronautica Sinica,2016,37(8):2603-2613.
    [11]ROY S,ZHAO PF,DASGUPTA A,et al.Dielectric barrier discharge actuator for vehicle drag reduction at highway speeds[J].AIP Advances,2016,6:025322.
    [12]SUN M,YANG B,PENG TX,et al.Optimum duty cycle of unsteady plasma aerodynamic actuation for NACA0015 airfoil stall separation control[J].Plasma Science and Technology,2016,18(6):680-686.
    [13]魏彪,梁华,牛中国,等.三角翼微秒脉冲等离子体流动控制的试验研究[J].高电压技术,2016,42(3):782-789.WEI Biao,LIANG Hua,NIU Zhongguo,et al.Experimental investigation of delta-wing flow control by microsecond pulse plasma actuator[J].High Voltage Engineering,2016,42(3):782-789.
    [14]RIZZETTA D P,VISBAL M R.Plasma-based control of excrescence-generated transition on a swept wing[J].AIAA Journal,2017,55(5):1610-1621.
    [15]YARUSEVYCH S,KOTSONIS M.Effect of local DBD plasma actuation on transition in a laminar separation bubble[J].Flow Turbulence Combust,2017,98:195-216.
    [16]KOPIEV V F,BELYAEV I V,ZAYTSEV M Y,et al.Noise control of a flow around a cylinder using high-frequency dielectric barrier discharge plasma actuators[J].Acoustical Physics,2015,61(2):178-180.
    [17]XU S Y,CAI J S,ZHANG Z K.Investigation of the electrode surface geometric effects driven by nanosecond-pulsed surface dielectric barrier discharge[J].Journal of Physics D:Applied Physics,2017,50(18):185201.
    [18]杨磊磊,蔡晋生,康磊.电压波形对介质阻挡等离子体放电特性和体积力的影响[J].高电压技术,2017,43(6):1910-1917.YANG Leilei,CAI Jinsheng,KANG Lei.Voltage waveform influencing on the discharge and thrust of dielectric barrier discharge plasma actuator[J].High Voltage Engineering,2017,43(6):1910-1917.
    [19]CORREALE G,WINKEL R,KOTSONIS M.Energy deposition characteristics of nanosecond dielectric barrier discharge plasma actuators:Influence of dielectric material[J].Journal of Applied Physics,2015,118(8):1-13.
    [20]王瑞雪,海彬,田思理,等.绝缘材料表面电荷测量优化及等离子体处理对其表面电特性的影响[J].高电压技术,2017,43(6):1808-1815.WANG Ruixue,HAI Bin,TIAN Sili,et al.Optimization of dielectric material surface charge measurement and impact of plasma treatment on their surface electrical characteristics[J].High Voltae Engineering,2017,43(6):1808-1815.
    [21]李杰,王昭博,姜楠,等.沿面介质阻挡放电的低压电极配置方法[J].高电压技术,2015,41(9):2844-2849.LI Jie,WANG Zhaobo,JIANG Nan,et al.Configuration method on ground electrode of surface dielectric barrier discharge[J].High Voltage Engineering,2015,41(9):2844-2849.
    [22]ERFANI R,ERFANI T,UTYUZHNIKOV S V,et al.Optimisation of multiple encapsulated electrode plasma actuator[J].Aerospace Science and Technology,2013,26(1):120-127.
    [23]NERETTI G,SERI P,TAGLIOLI M,et al.Geometry optimization of linear and annular plasma synthetic jet actuators[J].Journal of Physics D:Applied Physics,2017,50(1):015210.
    [24]VALERIOTI J A,CORKE T C.Pressure dependence of dielectric barrier discharge plasma flow actuators[J].AIAA Journal,2012,50(7):1490-1502.
    [25]SONI J,ROY S.Low pressure characterization of dielectric barrier discharge actuators[J].Applied Physics Letters,2013,102(11):112908.
    [26]WU Y,LI Y H,JIA M,et al.Influence of operating pressure on surface dielectric barrier discharge plasma aerodynamic actuation characteristics[J].Applied Physics Letters,2008,93(3):031503.
    [27]CHE X K,NIE W S,SHAO T,et al.Study of flow fields induced by surface dielectric barrier discharge actuator in low-pressure air[J].Physics of Plasmas,2014,21(4):043508.
    [28]田学敏,田希晖,车学科,等.不同气压下纳秒脉冲的放电特性[J].高电压技术,2016,42(3):813-820.TIAN Xuemin,TIAN Xihui,CHE Xueke,et al.Nanosecond pulse discharge characteristics under different pressure[J].High Voltage Engineering,2016,42(3):813-820.
    [29]ROTH JR,DAI X.Optimization of the aerodynamic plasma actuator as an electrohydrodynamic(EHD)electrical device[C]∥44th AIAAAerospace Sciences Meeting and Exhibit.Reno,Nevada:AIAA,2006:1203.
    [30]武占成,张希军,胡有志.气体放电[M].北京:国防工业出版社,2012.WU Zhancheng,ZHANG Xijun,HU Youzhi.Gas discharge[M].Beijing,China:National Defense Industry Press,2012.
    [31]RAIZER Y P.Gas discharge physics[M].Berlin,Germany:Springer,1991:128-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700