用户名: 密码: 验证码:
纳米通道内酶组装及其催化反应研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent Progresses of Enzymes Assembled in Nanochannels for Catalytic Reaction
  • 作者:上官莉 ; 徐璇 ; 刘松琴
  • 英文作者:SHANGGUAN Li;XU Xuan;LIU Song-qin;School of Chemistry and Environmental Engineering, Jiangsu University of Technology;School of Chemistry and Chemical Engineering,Southeast University;College of Chemistry and Molecular Engineering,Nanjing Tech University;
  • 关键词:纳米通道 ; 酶组装 ; 酶反应器 ; 限域效应 ; 酶催化动力学
  • 英文关键词:nanochannels;;enzymes assembled;;enzymes reactors;;confinement effect;;enzymes catalytic reaction kinetics
  • 中文刊名:DHXX
  • 英文刊名:Journal of Electrochemistry
  • 机构:江苏理工学院化学与材料工程学院;东南大学化学与化工学院;南京工业大学化学与分子工程学院;
  • 出版日期:2019-06-28
  • 出版单位:电化学
  • 年:2019
  • 期:v.25;No.113
  • 语种:中文;
  • 页:DHXX201903002
  • 页数:10
  • CN:03
  • ISSN:35-1172/O6
  • 分类号:15-24
摘要
研究酶的组装和催化反应不仅有利于探索生命活动的本质,同时对开发酶在工业合成、分析检测、疾病治疗等领域的实际应用价值具有重要的指导意义.研究发现,酶的有效固定和有序组装是保持酶活性、酶促反应的稳定性和对酶催化过程进行控制的重要途径,而在纳米通道内进行单酶或多酶的有序组装,利用纳米通道的限域效应可有效保持酶的构型进而提高酶催化反应的选择性和催化效率,增强酶级联反应的动力学进程.本文概述了近年来基于纳米通道的酶反应器在生物传感领域的研究进展,着重描述纳米通道限域空腔内酶的组装方法、酶催化反应及其动力学机制,并展望了基于纳米通道的酶反应器的应用前景.
        The research of enzymes assembled and catalytic reaction not only is beneficial to exploit the essences of life's activities, but also is significant in developing the practical application of enzymes in these areas including industrial production, analysis and detection, treatment of disease, etc. The effective immobilization and ordered assembly of enzymes are important methods for maintaining the catalytic activity, catalytic reaction stability and catalytic process controllability of enzymes. Among them, single or multi-enzymes are immobilized orderly in nanochannels that exhibit unique features and advantages, accordingly, the confinement effect of nanochannels can increase the selectivity and catalytic efficiency of enzymes through keeping the configuration. This paper mainly focuses on the recent development of enzymes reactors based on nanochannels in the areas of biosensors. The methods such as enzymes immobilization, enzymes catalytic reaction and mechanism of enzymes catalytic reaction kinetics are summarized.Moreover, the application prospect of enzymes catalytic reaction in nanochannels is envisioned.
引文
[1] Sheldon R A, Pelt S V. Enzyme immobilisation in biocatalysis:why, what and how[J]. Chemical Society Reviews, 2013,42(15):6223-6235.
    [2] Trevan M D. Immobilized enzymes:an introduction and applications in biotechnology[M]. UK:John Wiley&Sons Inc New York, 1980:138.
    [3] Zdarta J, Meyer A S, Jesionowski T, et al. A general overview of support materials for enzyme immobilization:characteristics, properties, practical utility[J]. Catalysts,2018, 8(2):92-118.
    [4] Li C L(李晨露), Peng H P(彭花萍), Huang Z N(黄种南),et al. Direct electrochemistry of glucose oxidase based on WS2quantum dots and its biosensing application[J]. Journal of Electrochemistry(电化学), 2017, 23(1):53-58.
    [5] Chen M, Zeng G M, Xu P, et al. How do enzymes ‘meet’nanoparticles and nanomaterials?[J]. Trends in Biochemical Sciences, 2017, 42(11):914-930.
    [6] Liu D M, Chen J, Shi Y P. Advances on methods and easy separated support materials for enzymes immobilization[J]. Tr AC Trends in Analytical Chemistry, 2018, 102:332-342.
    [7] Xie W L, Zang X Z. Covalent immobilization of lipase onto aminopropyl-functionalized hydroxyapatite-encapsulated-γ-Fe2O3nanoparticles:A magnetic biocatalyst for interesterification of soybean oil[J]. Food Chemistry, 2017, 227:397-403.
    [8] Ridhuan N S, Razak K A, Lockman Z, et al. Fabrication and characterization of glucose biosensors by using hydrothermally grown Zn O nanorods[J]. Scientific Reports,2018, 8:13722.
    [9] Adeel M, Bilal M, Rasheed T, et al. Graphene and graphene oxide:Functionalization and nano-bio-catalytic system for enzyme immobilization and biotechnological perspective[J]. International Journal of Biological Macromolecules,2018, 120:1430-1440.
    [10] Xu X(徐璇), Lu J S(卢菊生), Liu S Q(刘松琴). Fabrication and application of cytochrome P450 electrochemcial biosensor in drug metabolism[J]. Journal of Electrochemistry(电化学), 2015, 21(1):45-52.
    [11] Hartmann M, Kostrov X. Immobilization of enzymes on porous silicas-benefits and challenges[J]. Chemical Society Reviews, 2013, 42(15):6277-6289.
    [12] Lian X Z, Fang Y, Joseph E, et al. Enzyme-MOF(metal-organic framework)composites[J]. Chemical Society Reviews, 2017, 46(11):3386-3401.
    [13] Sun Q, Fu C W, Aguila B, et al. Pore environment control and enhanced performance of enzymes infiltrated in covalent organic frameworks[J]. Journal of the American Chemical Society, 2017, 140(3):984-992.
    [14] Tran D N, Balkus, K J. Perspective of recent progress in immobilization of enzymes[J]. ACS Catalysis, 2015, 1(8):956-968.
    [15] Long Z, Zhan S S, Gao P C, et al. Recent advances in solid nano-pores/channel analysis[J]. Analytical Chemistry,2017, 90(1):577-588.
    [16] Jang G, Kim S B, Park S I, et al. Ion-beam sculpting at nanometre length scales[J]. Nature, 2001, 412(6843):166-169.
    [17] Xiao K, Wen L P, Jiang L. Biomimetic solid-state nanochannels:from fundamental research to practical applications[J]. Small, 2016, 12(21):2810-2831.
    [18] Gascón V, Márquez-魣lvarez C, Blanco R M. Efficient retention of laccase by non-covalent immobilization on amino-functionalized ordered mesoporous silica[J]. Applied Catalysis A-General, 2014, 482(482):116-126.
    [19] Vijayaraj M, Gadiou R, Anselme K, et al. The influence of surface chemistry and pore size on the adsorption of proteins on nanostructured carbon materials[J]. Advanced Functional Materials, 2010, 20(15):2489-2499.
    [20] Yu J C, Zhang Y J, Liu S Q. Enzymatic reactivity of glucose oxidase confined in nanochannels[J]. Biosensors&Bioelectronics, 2014, 55(9):307-312.
    [21] Shangguan L, Wei Y Q, Liu X, et al. Confining a bi-enzyme inside the nanochannels of a porous aluminum oxide membrane for accelerating the enzymatic reactions[J].Chemical Communications, 2017, 53(18):2673-2676.
    [22] Lin L, Yan J, Li J H. Small-molecule triggered cascade enzymatic catalysis in hour-glass shaped nanochannel reactor for glucose monitoring[J]. Analytical Chemistry,2014, 86(21):10546-10551.
    [23] Duan C H, Alibakhshi M A, Kim D K, et al. Label-free electrical detection of enzymatic reactions in nanochannels[J]. ACS Nano, 2016, 10(8):7476-7484.
    [24] Valikhani D, Bolivar J M, Viefhues M, et al. A spring in performance:silica nanosprings boost enzyme immobilization in microfluidic channels[J]. ACS Applied Materials&Interfaces, 2017, 9(40):34641-34649.
    [25] Itoh T, Shimomura T, Hasegawa Y, et al. Assembly of an artificial biomembrane by encapsulation of an enzyme,formaldehyde dehydrogenase, into the nanoporous-walled silica nanotube-inorganic composite membrane[J]. Journal of Materials Chemistry, 2010, 21(1):251-256.
    [26] Ariga K, Ji Q M, Mori T, et al. Enzyme nanoarchitectonics:organization and device application[J]. Chemical Society Reviews, 2013, 42(15):6322-6345.
    [27] Garcia-Galan C,魣ngel Berenguer-Murcia, Fernandez-Lafuente R, et al. Potential of different enzyme immobilization strategies to improve enzyme performance[J]. Advanced Synthesis&Catalysis, 2011, 353(16):2885-2904.
    [28] Xu F, Wang W H, Tan Y J, et al. Facile trypsin immobilization in polymeric membranes for rapid, efficient protein digestion[J]. Analytical Chemistry, 2010, 82(24):10045-10051.
    [29] Ali M, Tahir M N, Siwy Z, et al. Hydrogen peroxide sensing with horseradish peroxidase-modified polymer single conical nanochannels[J]. Analytical Chemistry,2011, 83(5):1673-1680.
    [30] Li S J, Wang C, Wu Z Q, et al. Real-time monitoring of mass-transport-related enzymatic reaction kinetics in a nanochannel-array reactor[J]. Chemistry-A European Journal, 2010, 16(33):10186-10194.
    [31] Lu J S, Li H N, Cui D M, et al. Enhanced enzymatic reactivity for electrochemically driven drug metabolism by confining cytochrome P450 enzyme in Ti O2nanotube arrays[J]. Analytical Chemistry, 2014, 86(15):8003-8009.
    [32] Wang C, Li S J, Wu Z Q, et al. Study on the kinetics of homogeneous enzyme reactions in a micro/nanofluidics device[J]. Lab on A Chip, 2010, 10(5):639-646.
    [33] Wang C, Sheng Z H, Ouyang J, et al. Nanoconfinement effects:glucose oxidase reaction kinetics in nanofluidics[J]. ChemPhysChem, 2012, 13(3):762-768.
    [34] Chen Z Q, Zhang J J, Singh S, et al. Functionalized anodic aluminum oxide membrane-electrode system for enzyme immobilization[J]. ACS Nano, 2014, 8(8):8104-8112.
    [35] Tanvir S, Pantigny J, Boulnois P, et al. Covalent immobilization of recombinant human cytochrome CYP2E1 and glucose-6-phosphate dehydrogenase in alumina membrane for drug screening applications[J]. Journal of Membrane Science, 2009, 329(1):85-90.
    [36] Linko V, Eerikainen M, Kostiainen M A. A modular DNA origami-based enzyme cascade nanoreactor[J]. Chemical Communications, 2015, 51(25):5351-5354.
    [37] Xie Y B, Zhou L M, Huang H T. Bioelectrocatalytic application of titania nanotube array for molecule detection[J]. Biosensors&Bioelectronics, 2007, 22(12):2812-2818.
    [38] Hou G L, Zhang H C, Xie G H, et al. Ultratrace detection of glucose with enzyme-functionalized single nanochannels[J]. Journal of Materials Chemistry A, 2014, 2(45):19131-19135.
    [39] Liu X, Wei M, Liu Y J, et al. Label-free detection of telomerase activity in urine using telomerase-responsive porous anodic alumina nanochannels[J]. Analytical Chemistry, 2016, 88(16):8107-8114.
    [40] Liu Y, Fan J H, Yang H T, et al. Detection of PARP-1 activity based on hyperbranched-poly(ADP-ribose)polymers responsive current in artificial nanochannels[J]. Biosensors&Bioelectronics, 2018, 113:136-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700