用户名: 密码: 验证码:
直升机桨叶连续后缘襟翼设计与气动影响分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and Aerodynamic Authority Analysis of Continuous Trailing-edge Flap for Helicopter Blade
  • 作者:李贇 ; 董凌华 ; 周金龙 ; 杨卫东
  • 英文作者:Li Yun;Dong Linghua;Zhou Jinlong;Yang Weidong;National Key Laboratory of Rotorcraft Aeromechanics,Nanjing University of Aeronautics and Astronautics;
  • 关键词:旋翼 ; 直升机 ; 连续后缘襟翼 ; 流固耦合 ; 压电纤维复合材料
  • 英文关键词:rotor;;helicopter;;continuous trailing-edge flap;;fluid-solid coupling;;macro fiber composite
  • 中文刊名:HKGC
  • 英文刊名:Advances in Aeronautical Science and Engineering
  • 机构:南京航空航天大学直升机旋翼动力学国家重点实验室;
  • 出版日期:2018-05-28
  • 出版单位:航空工程进展
  • 年:2018
  • 期:v.9;No.34
  • 基金:南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20160109);; 江苏高校优势学科建设工程资助项目
  • 语种:中文;
  • 页:HKGC201802014
  • 页数:9
  • CN:02
  • ISSN:61-1479/V
  • 分类号:96-104
摘要
在直升机旋翼减振应用中,连续后缘襟翼和常规分离式襟翼相比具有重量轻、结构紧凑、气流平稳等优点。选用压电纤维复合材料作为驱动材料,基于NACA23012翼型设计带有连续变形后缘襟翼的桨叶段,对襟翼及其驱动结构进行选材设计分析;采用流固耦合方法分析连续后缘襟翼对剖面翼型气动特性的影响。结果表明:连续后缘襟翼在直升机桨叶工作迎角、马赫数范围内可实现有效偏转,显著改变翼剖面气动升力和力矩,证明了连续后缘襟翼在旋翼减振控制中的潜在应用价值。
        Continuous trailing-edge flap has many advantages over conventional discrete flap in helicopter rotor vibration reduction applications,such as light weight,compact structure and stable airflow.Macro fiber composite is chosen as the actuating material.A blade section with a continuous trailing-edge flap is designed based on NACA23012 airfoil,and its materials are selected and analyzed.The influence of continuous trailing-edge flap on airfoil aerodynamic characteristics is analyzed by fluid-solid coupling method.Results show that continuous trailing-edge flap can output sufficient deflection under the working conditions of helicopter blade,including angle of attack as well as Mach number,and improve aerodynamic lift and moment of the blade profile significantly,which demonstrates the potential value of continuous trailing-edge flap in rotor vibration reduction applications.
引文
[1]Straub F K,Kennedy D K,Stemple A D,et al.Development and whirl tower test of the SMART active flap rotor[C].Proceedings of SPIE,2004,5388:202-212.
    [2]Straub F K,Anand V R,Birchette T S,et al.Smart rotor development and wind tunnel test[C].Germany:Proceedings of the 35th European Rotorcraft Forum,2009,413-430.
    [3]Muir E,Liu L,Friedmann P P,et al.Hysteresis characterization in piezoceramic stack actuators and its influence on vibration and noise reduction in helicopters using actively controlled flaps[C].AIAA-2010-2994,2010.
    [4]Lorber P,O’Neill J,Hein B,et al.Whirl and wind tunnel testing of the Sikorsky active flap demonstrator rotor[C].Virginia Beach:American Helicopter Society 67th Annual Forum,2011.
    [5]Dieterich O,Enenkl B,Roth D.Trailing edge flaps for active rotor control aeroelastic characteristics of the ADASYS rotor system[C].Netherlands:American Helicopter Society 62nd Annual Forum,2006.
    [6]Roth D,Enenkl B,Dieterich O.Active rotor control by flaps for vibration reduction full scale demonstrator and first flight test results[C].Netherlands Proceedings for the 32nd European Rotorcraft Forum,2007,801-814.
    [7]张柱,黄文俊,杨卫东.后缘小翼型智能旋翼桨叶模型设计分析与试验研究[J].南京航空航天大学学报,2011,43(3):296-301.Zhang Zhu,Huang Wenjun,Yang Weidong.Design analysis and test of smart rotor blades model with trailing edge flaps[J].Journal of Nanjing University of Aeronautics&Astronautics,2011,43(3):296-301.(in Chinese)
    [8]刘士明,杨卫东,虞志浩,等.后缘小翼智能旋翼有限偏角减振效果分析[J].振动、测试与诊断,2017,37(3):432-439.Liu Shiming,Yang Weidong,Yu Zhihao,et al.Vibration control analysis of trailing edge flap smart rotor with limited deflection angle[J].Journal of Vibration,Measurement&Diagnosis,2017,37(3):432-439.(in Chinese)
    [9]Shen Jinwei,Robert P,Liu Yi,et al.Design and optimization of an airfoil with active continuous trailing-edge flap[C].Phoenix:American Helicopter Society 69th Annual Forum,2013.
    [10]朱红钧.ANSYS 14.5热流固耦合实战指南[M].北京:人民邮电出版社,2014:342-365.Zhu Hongjun.Practical guide for ANSYS14.5heat fluidstructure interaction[M].Beijing:Posts and Telecommunications Press,2014:342-365.(in Chinese)
    [11]侯志伟,陈仁文,徐志伟,等.压电纤维复合材料在结构减振中的应用[J].振动测试与诊断,2010,30(1):51-54.Hou Zhiwei,Chen Renwen,Xu Zhiwei,et al.Application of macro-fiber composite to structural vibration suppression[J].Journal of Vibration,Measurement&Diagnosis,2010,30(1):51-54.(in Chinese)
    [12]董兴建,孟光.压电结构的热弹性比拟建模方法[J].应用力学学报,2005,22(3):346-350.Dong Xingjian,Meng Guang.A thermo-elasticity analogy modeling method for piezoelectric structure[J].Chinese Journal of Applied Mechanics,2005,22(3):346-350.(in Chinese)
    [13]孙士勇,杨睿,张少辉,等.叉指形电极压电执行器的热弹性比拟分析方法[J].压电与声光,2015,37(1):32-34.Sun Shiyong,Yang Rui,Zhang Shaohui,et al.The thermoelasticity analogy approach for the analysis of Inter-digital electrodes of piezo-actuator[J].Piezoelectrics&Acoustooptics,2015,37(1):32-34.(in Chinese)
    [14]Giannelis N F,Vio G A.Computational benchmark of commercial fluid-structure interaction software for aeroelastic applications[C].Saint Petersburg:AIAC16 Australian International Aerospace Congress,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700