用户名: 密码: 验证码:
多孔石墨烯的合成及应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and Applications of Porous Graphene
  • 作者:周登 ; 黎明
  • 英文作者:Deng Zhou;Ming Li;Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education,Hubei Collaborative Innovation Center for Advanced, College of Chemistry and Chemical Engineering, Hubei University;
  • 关键词:石墨烯 ; 多孔材料 ; 比表面积 ; 掺杂 ; 复合材料
  • 英文关键词:Graphene;;Porous material;;Specific surface area;;Doping;;Composite
  • 中文刊名:GFXB
  • 英文刊名:Acta Polymerica Sinica
  • 机构:有机功能分子合成与应用教育部重点实验室有机化工新材料湖北省协同创新中心高分子材料湖北省重点实验室湖北大学化学化工学院;
  • 出版日期:2019-04-09 11:43
  • 出版单位:高分子学报
  • 年:2019
  • 期:v.50
  • 基金:国家自然科学基金(基金号21873027,21504023)资助项目
  • 语种:中文;
  • 页:GFXB201907002
  • 页数:14
  • CN:07
  • ISSN:11-1857/O6
  • 分类号:27-40
摘要
石墨烯由于其优异的性能,例如高比表面积、高导电性、良好的热稳定性和优异的机械强度,引起了人们极大的研究兴趣.但是石墨烯本身不具有固有孔隙.为了使其具有固有孔隙,各种多孔石墨烯材料被制备出来,例如,全碳型多孔石墨烯、掺杂型多孔石墨烯及多孔石墨烯复合材料等等.由于多孔石墨烯既能保留原始石墨烯的部分性质,又比原始石墨烯具有更高的比表面积和孔隙体积,它在光电子器件、储能、气体分离/储存、废水分离及光催化等领域都具有巨大的应用前景.本文主要回顾各种多孔石墨烯材料的合成方法以及这些材料在各个领域的应用,并展望了多孔石墨烯材料在合成和应用中的机遇和挑战.
        Graphene is an sp2 carbon material having a hexagonal honeycomb lattice in a single-layer twodimensional(2 D) plane due to its excellent properties such as high specific surface area, high electrical conductivity, good thermal stability and excellent mechanical properties. It has already aroused great research interest. Porous graphene refers to a carbon material possessing nano-scale pores in a two-dimensional plane. Due to the introduction of pores, not only the accumulation caused by π-π electron interaction is effectively avoided,but also some properties of the original graphene can be retained for porous graphene with higher specific surface area and pore volume. And also, the band gap of graphene was effectively opened. Therefore, it has great application prospects in the fields of optoelectronic devices, energy storage, gas separation/storage, wastewater separation and photocatalysis. At present, various porous graphene materials(for example, all-carbon porous graphene, doped porous graphene, and porous graphene composite materials, etc.) prepared by chemical synthesis,hydrothermal method, electrochemical reduction method, and template-oriented chemical vapor deposition(CVD)method, have been well applied in various fields. This paper aims to summarize the design and synthesis of various porous graphene materials, and also discusses the characteristics, advantages and disadvantages of porous graphene and various potential applications as well as the comparison of various porous graphene structures and properties. And looking forward to future research, it may focus on developing simpler, more convenient synthesis methods and how to accurately control the size, structure, and distribution density of pores in porous graphene,how to precisely control the type and distribution of doping elements, and how to better couple with other materials to obtain better composite materials, making porous graphene more excellent in various applications.
引文
1Allen M J,Tung V C,Kaner R B.Chem Rev,2010,110(1):132-145
    2Rao C N R,Sood A K,Subrahmanyam K S,Govindaraj A.Angew Chem Int Ed,2009,48(42):7752-7777
    3Novoselov K S,Geim A K,Morozov S V,Jiang D,Zhang Y,Dubonos S V,Grigorieva I V,Firsov A A.Science,2004,306(5696):666-669
    4Zhu Y,Murali S,Cai W,Li X,Suk J W,Potts J R,Ruoff R S.Adv Mater,2010,22(35):3906-3924
    5Huang X,Yin Z,Wu S,Qi X,He Q,Zhang Q,Yan Q,Boey F,Zhang H.Small,2011,7(14):1876-1902
    6Liu J,Xue Y,Zhang M,Dai L.MRS Bull,2012,37(12):1265-1272
    7Yan J,Wei T,Shao B,Ma F,Fan Z,Zhang M,Zheng C,Shang Y,Qian W,Wei F.Carbon,2010,48(6):1731-1737
    8Fan Z,Yan J,Zhi L,Zhang Q,Wei T,Feng J,Zhang M,Qian W,Wei F.Adv Mater,2010,22(33):3723-3728
    9Zhao M Q,Liu X F,Zhang Q,Tian G L,Huang J Q,Zhu W,Wei F.ACS Nano,2012,6(12):10759-10769
    10Shao J J,Lv W,Guo Q,Zhang C,Xu Q,Yang Q H,Kang F.Chem Commun,2012,48(31):3706-3708
    11Zhao M Q,Zhang Q,Huang J Q,Tian G L,Chen T C,Qian W Z,Wei F.Carbon,2013,54:403-411
    12Fan Z J,Yan J,Wei T,Ning G Q,Zhi L J,Liu J C,Cao D X,Wang G L,Wei F.ACS Nano,2011,5(4):2787-2794
    13Rakhi R B,Alshareef H N.J Power Sources,2011,196(20):8858-8865
    14Rakhi R B,Chen W,Cha D,Alshareef H N.Adv Eng Mater,2012,2(3):381-389
    15Chen S,Duan J,Tang Y,Zhang Qiao S.Chem Eur J,2013,19(22):7118-7124
    16Chen S,Duan J,Jaroniec M,Qiao S Z.J Mater Chem A,2013,1(33):9409-9413
    17Chen X C,Wei W,Lv W,Su F Y,He Y B,Li B,Kang F,Yang Q H.Chem Commun,2012,48(47):5904-5906
    18Yan J,Wei T,Fan Z,Qian W,Zhang M,Shen X,Wei F.J Power Sources,2010,195(9):3041-3045
    19Ning G,Xu C,Mu L,Chen G,Wang G,Gao J,Fan Z,Qian W,Wei F.Chem Commun,2012,48(54):6815-6817
    20Ning G,Wang H,Zhang X,Xu C,Chen G,Gao J.Particuology,2013,11(4):415-420
    21Fan Z,Yan J,Ning G,Wei T,Zhi L,Wei F.Carbon,2013,60:558-561
    22Chen Y,Liu Z,Sun L,Lu Z,Zhuo K.J Power Sources,2018,390:215-223
    23Liu Y,Liu J,Li Z,Fan X,Li Y,Zhang F,Zhang G,Peng W,Wang S.Int J Hydrogen Energy,2018,43(30):13946-13952
    24Jiang L,Fan Z.Nanoscale,2014,6(4):1922-1945
    25Jin H,Guo C,Liu X,Liu J,Vasileff A,Jiao Y,Zheng Y,Qiao S Z.Chem Rev,2018,118(13):6337-6408
    26Ramos Ferrer P,Mace A,Thomas S N,Jeon J W.Nano Convergence,2017,4(1):1-29
    27Fischbein M D,Drndi?M.Appl Phys Lett,2008,93(11):113107
    28Bulbula S T,Lu Y,Dong Y,Yang X Y.New J Chem,2018,42(8):5634-5655
    29Bieri M,Treier M,Cai J,Ait-Mansour K,Ruffieux P,Groning O,Groning P,Kastler M,Rieger R,Feng X,Mullen K,Fasel R.Chem Commun,2009,45:6919-6921
    30Zhou D,Tan X,Wu H,Tian L,Li M.Angew Chem Int Ed,2018,58:1376-1381
    31Ning G,Xu C,Hao L,Kazakova O,Fan Z,Wang H,Wang K,Gao J,Qian W,Wei F.Carbon,2013,51:390-396
    32Akhavan O.ACS Nano,2010,4(7):4174-4180
    33Zhu Y,Murali S,Stoller M D,Ganesh K J,Cai W,Ferreira P J,Pirkle A,Wallace R M,Cychosz K A,Thommes M,Su D,Stach E A,Ruoff R S.Science,2011,332(6037):1537
    34Wang Y J,Zhao N,Fang B,Li H,Bi X T,Wang H.Chem Rev,2015,115(9):3433-3467
    35Dai L,Xue Y,Qu L,Choi H J,Baek J B.Chem Rev,2015,115(11):4823-4892
    36Liu M,Zhang R,Chen W.Chem Rev,2014,114(10):5117-5160
    37Wang H,Maiyalagan T,Wang X.ACS Catal,2012,2(5):781-794
    38Wang D W,Su D.Energy Environ Sci,2014,7(2):576-591
    39Yang L,Jiang S,Zhao Y,Zhu L,Chen S,Wang X,Wu Q,Ma J,Ma Y,Hu Z.Angew Chem Int Ed,2011,50(31):7132-7135
    40Poh H L,?imek P,Sofer Z,Pumera M.ACS Nano,2013,7(6):5262-5272
    41Liu Z W,Peng F,Wang H J,Yu H,Zheng W X,Yang J.Angew Chem Int Ed,2011,50(14):3257-3261
    42Hassani S S,Samiee L,Ghasemy E,Rashidi A,Ganjali M R,Tasharrofi S.Int J Hydrogen Energy,2018,43(33):15941-15951
    43Li F,Lu L,Gao D,Wang M,Wang D,Xia Z.Talanta,2018,185:528-536
    44Dong F,Cai Y,Liu C,Liu J,Qiao J.Int J Hydrogen Energy,2018,43(28):12661-12670
    45Liu J,Zan W,Li K,Yang Y,Bu F,Bao W,Xu Y.J Am Chem Soc,2017,139(34):11666-11669
    46Klechikov A G,Mercier G,Merino P,Blanco S,Merino C,Talyzin A V.Microporous Mesoporous Mater,2015,210:46-51
    47Srinivas G,Zhu Y,Piner R,Skipper N,Ellerby M,Ruoff R.Carbon,2010,48(3):630-635
    48Huang C C,Pu N W,Wang C A,Huang J C,Sung Y,Ger M D.Sep Purif Technol,2011,82:210-215
    49Liu Y,Zhang Z,Hu R.Ceram Int,2018,44(11):12458-12465
    50Liu Y,Zhang Z,Wang T.Int J Hydrogen Energy,2018,43(24):11120-11131
    51Liu Y,Hu R,Zhang Z.J Porous Mater,2018,Doi:10.1007/s10934-018-0653-9
    52Zhang C J,Pan G L,Zhou Y Q,Xu C W.Ionics,2018,24(10):3095-3100
    53Chakravarty C,Mandal B,Sarkar P.J Phys Chem C,2018,122(28):15835-15842
    54Ye J,Chen Z,Liu Q,Xu C.J Colloid Interface Sci,2018,516:1-8
    55Xu Z,Zhang Y,Wang Y,Zhan L.Appl Surf Sci,2018,450:348-355
    56Jing Y,Zhou Z,Cabrera C R,Chen Z.J Mater Chem A,2014,2(31):12104-12122
    57Ren L,Hui K N,Hui K S,Liu Y,Qi X,Zhong J,Du Y,Yang J.Sci Rep,2015,5:14229
    58Xu C,Xu B,Gu Y,Xiong Z,Sun J,Zhao X S.Energy Environ Sci,2013,6(5):1388-1414
    59Etacheri V,Marom R,Elazari R,Salitra G,Aurbach D.Energy Environ Sci,2011,4(9):3243-3262
    60Cao H,Zhou X,Deng W,Liu Z.J Mater Chem A,2016,4(16):6021-6028
    61Zhang L S,Jiang L Y,Yan H J,Wang W D,Wang W,Song W G,Guo Y G,Wan L J.J Mater Chem,2010,20(26):5462-5467
    62Sun D,Yan X,Yang J,Zhang P,Xue Q.Chem Electro Chem,2015,2(11):1830-1838
    63Kang W,Deng N,Ju J,Li Q,Wu D,Ma X,Li L,Naebe M,Cheng B.Nanoscale,2016,8(37):16541-16588
    64Behzadirad M,Lavrova O,Busani T.J Mater Chem.A,2016,4(20):7830-7840
    65Wei Seh Z,Li W,Cha J J,Zheng G,Yang Y,McDowell M T,Hsu P C,Cui Y.Nat Commun,2013,4:1331
    66Xu C,Wu Y,Zhao X,Wang X,Du G,Zhang J,Tu J.J Power Sources,2015,275:22-25
    67Sun H,Xu G L,Xu Y F,Sun S G,Zhang X,Qiu Y,Yang S.Nano Res,2012,5(10):726-738
    68Li D,Han F,Wang S,Cheng F,Sun Q,Li W C.ACS Appl Mater Interfaces,2013,5(6):2208-2213
    69Shin E S,Kim K,Oh S H,Cho W I.Chem Commun,2013,49(20):2004-2006
    70Li Y,Ye D,Liu W,Shi B,Guo R,Zhao H,Pei H,Xu J,Xie J.ACS Appl Mater Interfaces,2016,8(42):28566-28573
    71Huang J Q,Liu X F,Zhang Q,Chen C M,Zhao M Q,Zhang S M,Zhu W,Qian W Z,Wei F.Nano Energy,2013,2(2):314-321
    72Liu S,Xie K,Chen Z,Li Y,Hong X,Xu J,Zhou L,Yuan J,Zheng C.J Mater Chem A,2015,3(21):11395-11402
    73You Y,Zeng W,Yin Y X,Zhang J,Yang C P,Zhu Y,Guo Y G.J Mater Chem A,2015,3(9):4799-4802
    74Walcarius A.Chem Soc Rev,2013,42(9):4098-4140
    75Nardecchia S,Carriazo D,Ferrer M L,Gutiérrez M C,del Monte F.Chem Soc Rev,2013,42(2):794-830
    76Sun M H,Huang S Z,Chen L H,Li Y,Yang X Y,Yuan Z Y,Su B L.Chem Soc Rev,2016,45(12):3479-3563
    77Zhang J G,Wang D,Xu W,Xiao J,Williford R E.J Power Sources,2010,195(13):4332-4337
    78Jung H G,Jeong Y S,Park J B,Sun Y K,Scrosati B,Lee Y J.ACS Nano,2013,7(4):3532-3539
    79Ma Z,Yuan X,Li L,Ma Z F,Wilkinson D P,Zhang L,Zhang J.Energy Environ Sci,2015,8(8):2144-2198
    80Sun C,Li F,Ma C,Wang Y,Ren Y,Yang W,Ma Z,Li J,Chen Y,Kim Y,Chen L.J Mater Chem A,2014,2(20):7188-7196
    81Wang Z L,Xu D,Xu J J,Zhang L L,Zhang X B.Adv Funct Mater,2012,22(17):3699-3705
    82Li F,Zhang T,Zhou H.Energy Environ Sci,2013,6(4):1125-1141
    83Jeong Y S,Park J B,Jung H G,Kim J,Luo X,Lu J,Curtiss L,Amine K,Sun Y K,Scrosati B,Lee Y.Nano Lett,2015,15(7):4261-4268
    84Wang L,Zhao X,Lu Y,Xu M,Zhang D,Ruoff R S,Stevenson K J,Goodenough J B.J Electrochem Soc,2011,158(12):A1379
    85Xiao J,Zhang J M,Li X L,Shao Y Y,Zhang J G.Nanotechnology,2013,24(42):424004
    86Cui H,Zhou Z,Jia D.Mater Horizons,2017,4(1):7-19
    87Li J,Zhang Y,Zhou W,Nie H,Zhang H.J Power Sources,2014,262:29-35
    88Yang X Y,Chen L H,Li Y,Rooke J C,Sanchez C,Su B L.Chem Soc Rev,2017,46(2):481-558
    89Xiao J,Mei D,Li X,Xu W,Wang D,Graff G L,Bennett W D,Nie Z,Saraf LV,Aksay IA,Liu J,Zhang J G.NanoLett,2011,11(11):5071-5078
    90Yang W,Ni M,Ren X,Tian Y,Li N,Su Y,Zhang X.Curr Opin Colloid Interface Sci,2015,20(5):416-428
    91Tan Y B,Lee J M.J Mater Chem A,2013,1(47):14814-14843
    92Wang Q,Yan J,Fan Z.Energy Environ Sci,2016,9(3):729-762
    93You B,Jiang J,Fan S.ACS Appl Mater Interfaces,2014,6(17):15302-15308
    94Tong X,Zhuo H,Wang S,Zhong L,Hu Y,Peng X,Zhou W,Sun R.RSC Adv,2016,6(41):34261-34270
    95Tian W,Gao Q,Tan Y,Yang K,Zhu L,Yang C,Zhang H.J Mater Chem A,2015,3(10):5656-5664
    96Gao Y P,Zhai Z-B,Huang K J,Zhang Y Y.New J Chem,2017,41(20):11456-11470
    97Yu S,Liu Y-D,Li Y,Lin Y,Shen J,Zhang L,Li X M,He T.Mater Chem Phys,2016,177:171-178
    98Chang B,Zhang S,Sun L,Yin H,Yang B.RSC Adv,2016,6(75):71360-71369
    99Gu W,Sevilla M,Magasinski A,Fuertes A B,Yushin G.Energy Environ Sci,2013,6(8):2465-2476
    100Wu Y P,Fang S,Jiang Y,Holze R.J Power Sources,2002,108(1):245-249
    101Romero J,Rodriguez San Miguel D,Ribera A,Mas BallestéR,Otero T F,Manet I,Licio F,Abellán G,Zamora F,Coronado E.J Mater Chem A,2017,5(9):4343-4351
    102Yu W,Wang H,Liu S,Mao N,Liu X,Shi J,Liu W,Chen S,Wang X.J Mater Chem A,2016,4(16):5973-5983
    103Yu X,Kang Y,Park H S.Carbon,2016,101:49-56
    104Balamurugan J,Thanh T D,Kim N H,Lee J H.J Mater Chem A,2016,4(24):9555-9565
    105Biener J,Stadermann M,Suss M,Worsley M A,Biener M M,Rose K A,Baumann T F.Energy Environ Sci,2011,4(3):656-667
    106Gaponik N,Herrmann A K,Eychmüller A.J Phys Chem Lett,2012,3(1):8-17
    107Worsley M A,Pauzauskie P J,Olson T Y,Biener J,Satcher J H,Baumann T F.J Am Chem Soc,2010,132(40):14067-14069
    108Li Y,Chen J,Huang L,Li C,Hong J D,Shi G.Adv Mater,2014,26(28):4789-4793
    109Choi W,Azad U P,Choi J P,Lee D.Electroanalysis,2018,30(7):1472-1478
    110Wu Z S,Yang S,Sun Y,Parvez K,Feng X,Müllen K.J Am Chem Soc,2012,134(22):9082-9085
    111Hu J,Li Y,Gao G,Xia S.Sensors,2017,17(11):2594/1-2594/16
    112Tabish T A,Memon F A,Gomez D E,Horsell D W,Zhang S.Sci Rep,2018,8(1):1817
    113Blankenburg S,Bieri M,Fasel R,Müllen K,Pignedoli C A,Passerone D.Small,2010,6(20):2266-2271
    114Du H,Li J,Zhang J,Su G,Li X,Zhao Y.J Phys Chem C,2011,115(47):23261-23266
    115Hankel M,Jiao Y,Du A,Gray S K,Smith S C.J Phys Chem C,2012,116(11):6672-6676
    116Hauser A W,Schwerdtfeger P.Phys Chem Chem Phys,2012,14(38):13292-13298
    117Shan M,Xue Q,Jing N,Ling C,Zhang T,Yan Z,Zheng J.Nanoscale,2012,4(17):5477-5482
    118Si C,Zhou G.J Phys Chem C,2012,137(18):184309
    119Jungthawan S,Reunchan P,Limpijumnong S.Carbon,2013,54:359-364
    120Schrier J.Phys Chem Lett,2010,1(15):2284-2287
    121Oyama S T,Lee D,Hacarlioglu P,Saraf R F.J Membr Sci,2004,244(1):45-53
    122Jiang D,Cooper V R,Dai S.Nano Lett,2009,9(12):4019-4024
    123Zarei A,Rashidi A,Saber Tehrani M,Aberoomand Azar P.Int J Environ Sci Technol,2018,DOI:10.1007/s13762-018-1670-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700