用户名: 密码: 验证码:
含柔性链段聚右旋乳酸嵌段共聚物对聚左旋乳酸拉伸行为的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Poly(D-lactic acid) Block Copolymers with Soft Chains on the Tensile Behavior of Poly(L-lactic acid)
  • 作者:李晓露 ; 王锐 ; 杨春芳 ; 董振峰 ; 张秀芹 ; 王笃金 ; 王德义
  • 英文作者:Xiao-lu Li;Rui Wang;Chun-fang Yang;Zhen-feng Dong;Xiu-qin Zhang;Du-jin Wang;De-yi Wang;Beijing Key Laboratory of Clothing Materials R &D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology;Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry,Chinese Academy of Sciences;Madrid Institute for Advances Studies of Materials;
  • 关键词:聚左旋乳酸 ; 嵌段共聚物 ; 拉伸行为 ; 结晶
  • 英文关键词:Poly(L-lactic acid);;PDLA-b-PEG-b-PDLA;;Stretching behavior;;Crystallization
  • 中文刊名:GFXB
  • 英文刊名:Acta Polymerica Sinica
  • 机构:北京服装学院服装材料研究开发与评价北京市重点实验室北京市纺织纳米纤维工程技术研究中心;中国科学院化学研究所北京分子科学国家实验室中国科学院工程塑料重点实验室;马德里高等材料研究院;
  • 出版日期:2018-04-17 11:54
  • 出版单位:高分子学报
  • 年:2018
  • 基金:国家自然科学基金(基金号51673003,51628301);; “重点基础材料技术提升与产业化”重点专项(项目号2017YFB0309300)资助
  • 语种:中文;
  • 页:GFXB201805006
  • 页数:9
  • CN:05
  • ISSN:11-1857/O6
  • 分类号:54-62
摘要
采用聚右旋乳酸(PDLA)与聚乙二醇(PEG)的三嵌段共聚物(PDLA-b-PEG-b-PDLA)对聚左旋乳酸(PLLA)进行改性,系统研究熔融共混法制备的PLLA/PDLA-b-PEG-b-PDLA共混物的热性能和不同温度下的拉伸行为,并通过原位X射线散射(WAXS)技术探索不同含量的PDLA-b-PEG-b-PDLA对PLLA在拉伸过程中结晶行为的影响.结果表明,加入PDLA-b-PEG-b-PDLA对PLLA的热稳定性影响较小;PLLA/PDLA-b-PEG-b-PDLA共混物中由于立构晶的存在,能有效提高PLLA的α晶的结晶速率;室温(30°C)拉伸时,样品均呈现脆性断裂;拉伸温度提高至50°C,纯PLLA和PLLA/PDLA-b-PEG-b-PDLA(95/5)的共混物仍然呈现脆性断裂,但是随着PDLA-b-PEG-b-PDLA含量的增加,PLLA发生屈服,断裂伸长率由纯PLLA的10%左右提高至200%以上;80°C拉伸时,PDLA-b-PEG-b-PDLA的加入显著提高了PLLA在拉伸过程中的结晶速率,出现α晶的应变从纯PLLA的400%降低至50%以下,立构晶含量在拉伸过程中基本保持不变.上述结果显示含柔性链段的PDLA的嵌段共聚物可有效提高PLLA的结晶速率和延展性,拓宽PLLA的应用范围.
        Poly(L-lactic acid)(PLLA) is a biodegradable and biocompatible material used in many fields, such as packaging, textile and drug delivery. The low crystallization rate and poor toughness are two major drawbacks for its processing and high-performance applications. In this study, poly(D-lactic acid)-polyethylene glycol(PEG)-poly(D-lactic acid) triblock copolymers(PDLA-b-PEG-b-PDLA) were used to modify the structure and property of PLLA. PLLA/PDLA-b-PEG-b-PDLA blends were prepared by melt blending, and their thermal and mechanical properties were systematically studied by thermal gravimetric analysis(TGA), differential scanning calorimetry(DSC) and temperature-variable tensile tests. To understand the structure evolution, the crystallization behavior of the blends during stretching was investigated by in situ wide angle X-ray scattering(WAXS). The results showed that the addition of PDLA-b-PEG-b-PDLA had no detrimental effect on the thermal stability of PLLA. By virtue of the nucleation capacity of the stereo-complex crystals formed between PLLA and PDLA chains, the crystallization rate of the α crystals of the PLLA matrix was improved remarkably compared with that of pure PLLA. When stretched at room temperature(30 °C), the modified PLLA samples displayed brittle fracture. With the stretching temperature increased to 50 °C, both PLLA and PLLA/PDLA-b-PEG-b-PDLA(95/5) exhibited brittle fracture. However, the blends showed clear yielding and ductile deformation with an elongation at break as high as 200% when the content of the triblock copolymer was above 5%. With the stretching temperature further increased to 80 °C, the crystallization of α crystals in the PLLA/PDLA-b-PEG-b-PDLA blends was significantly enhanced during the stretching process. The critical strain, where α crystals appeared in the blend, decreased from400% in pure PLLA to less than 50%. The stereo-complex crystallites had no change during the stretching process. The above results indicated that the triblock copolymer consisting of PDLA and PEG chains was an excellent candidate as PLLA modifier with dual effects of promoting crystallization and improving toughness.
引文
1Liu Y L,Shao J,Sun J R,Bian X C.Polym Degrad Stab,2014,101:10-17
    2 Xiong Zujiang(熊祖江),Zhang Xiuqin(张秀芹),Liu Guoming(刘国明).Chem J Chinese U(高等学校化学学报),2013,(5):1288-1294
    3 Rathi S R,Ng D,Coughlin E B.Macromol Chem Phys,2014,215(4):320-326
    4 Saeidlou S,Huneault M A,Li H.Prog Polym Sci,2012,37(2):1657-1677
    5 Weber C J,Haugaard V,Festersen R.Food Addit Contam,2001,19:172-177
    6 Zhang Xiuqin(张秀芹),Xiong Zujiang(熊祖江),Liu Guoming(刘国明).Acta Polymerica Sinica(高分子学报),2014,(8):1048-1055
    7 Rathi S,Chen X L,Coghlin E B.Polymer,2011,52:4184-4188
    8 Han L L,Yu C T,Zhou J,Shan G R,Bao Y Z.Polymer,2016,103:376-386
    9 Zhang X Q,Konrad Schneider,Liu G M.Polymer,2011,52:4141-4149
    10 Zhan X J,Shi X T,Zhang G C.Polymer,2017,9(3):107
    11 Stoclet G.Polymer,2016,(99):231-239
    12 Shao J,Xiang S,Bian X C,Sun J R,Li G,Chen X S.Ind Eng Chem Res,2015,54(7):2246-2253
    13 Tsuji H,Takai H,Fukada N,Takikawa H.Macromol Mater Eng,2006,291(4):325-335
    14 Anderson K S,Hillmyer M A.Polymer,2006,47(6):2030-2035
    15 Sawai D,Tsugane Y,Tamada M.J Polym Sci,Part B:Polym Phys,2007,45:2632-3629
    16 Yin Y A,Song Y,Xiong Z J,Zhang X Q.J Appl Polym Sci,2016,133(10):43015
    17 Wei X F,Bao R Y,Cao Z Q,Yang W,Xie B H,Yang M B.Macromolecules,2014,47:1439-1448
    18Zhang J M,Wang S W,Zhao D Z.J Appl Polym Sci,2017,134(43):45193
    19Chen Z M,Liu Y L.Mater Lett,2015,155:94-96
    20Song Y,Wang D J.ACS Sustain Chem Eng,2015,3:1492-1500

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700