用户名: 密码: 验证码:
某1000MW对冲燃烧超超临界锅炉水冷壁汽温偏差分析及设计运行对策
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on the Steam Temperature Deviation of Water Wall and the Countermeasures of Design and Operation for a 1000MW Ultra Supercritical Boiler With Opposed Firing
  • 作者:聂鑫 ; 杨冬 ; 吕宏彪 ; 张世宏 ; 黄宏伟 ; 员盼锋 ; 杨培军 ; 周科
  • 英文作者:NIE Xin;YANG Dong;Lü Hongbiao;ZHANG Shihong;HUANG Hongwei;YUN Panfeng;YANG Peijun;ZHOU Ke;State Key Laboratory of Multiphase Flow in Power Engineering (Xi'an Jiaotong University);Henan Electric Power Generation Limited Company, State Power Investment Corporation;Xi'an Thermal Power Research Institute Co., Ltd;
  • 关键词:1000MW ; 超超临界 ; 锅炉水冷壁 ; 汽温偏差 ; 水动力 ; 吸热偏差试验 ; 磨煤机投运 ; 质量流率
  • 英文关键词:1000MW;;ultra supercritical;;boiler water wall;;steam temperature deviation;;hydrodynamic;;endothermic deviation test;;coal pulverize;;mass flow rate
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:动力工程多相流国家重点实验室(西安交通大学);国家电投集团河南电力有限公司;西安热工研究院有限公司;
  • 出版日期:2019-02-05
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.614
  • 基金:国家科技支撑计划项目(2015BAA03B01);; 国家重点研发计划(2017YFB0902100)~~
  • 语种:中文;
  • 页:ZGDC201903011
  • 页数:11
  • CN:03
  • ISSN:11-2107/TM
  • 分类号:118-127+327
摘要
针对1000MW超超临界锅炉水冷壁出现的较大汽温偏差进行了试验研究和水动力计算。在锅炉结构和燃烧方式的基础上建立了平顶山发电分公司锅炉的流动网络系统水动力计算数学模型,根据计算模型划分的流动回路在现场布置了相关试验测点。通过现场启炉试验、变磨煤机投运方式试验和中间混合集箱混合效果试验,结合水动力计算结果,探索各因素影响汽温偏差的规律。研究结果发现,升负荷速率和局部热负荷过大会造成较大汽温偏差,启炉过程中应控制升负荷速率不大于25MW/min;在4台磨投运试验工况中推荐BCEF组合方式,5台磨投运试验工况中推荐ABCEF组合方式;中间过渡段混合集箱50%BMCR负荷至100%BMCR负荷混合效果良好。在锅炉整体结构设计方面,需通过增大进入上炉膛前墙的流动截面积以改变前墙水动力适应性,降低其热敏感性。
        The hydrodynamic calculation and experimental study were carried out for the water wall steam temperature deviation in the furnace of the 1000 MW ultra supercritical boiler. Based on the boiler structure and combustion mode, a network system mathematical model of a 1000 MW boiler was established. According to the flow loop, the relevant test points were arranged on site. The law of the various factors on the wall temperature deviation was explored through the field test of startup of boilers, the experiment on different working ways of coal pulverizers and the mixing effect test of mixed boxes, combined with the results of the hydrodynamic calculation. The results of the study indicates that the higher increased rate of boilers load and local heat load lead to large steam temperature deviation at outlet of furnace and the increased rate of boilers load should be not more than 25 MW/min during startup of boilers. Besides, through the experiment on different working ways of coal pulverizers, the pulverizers working ways of BCEF and ABCEF are recommended. It appears that the mixed boxes have a good mixing effect between 50% BMCR load and 100%BMCR load in the middle transition section. In terms of boiler structure design, in order to improve the hydrodynamic adaptability of the front wall of the upper furnace, the flow cross-sectional area of the front wall should be increased.
引文
[1]杨冬,于辉,华洪渊,等.超(超)临界垂直管圈锅炉水冷壁流量分配及壁温计算[J].中国电机工程学报,2008,28(17):32-38.Yang Dong,Yu Hui,Hua Hongyuan,et al.Numerical computation on the mass flow rate profile and metal temperature in vertical water wall of an ultra supercritical boiler[J].Proceedings of the CSEE,2008,28(17):32-38(in Chinese).
    [2]曾俊,李文军,何洪浩,等.超超临界压力锅炉垂直水冷壁壁温偏差试验研究[J].湖南电力,2017,37(3):56-58,82.Zeng Jun,Li Wenjun,He Honghao,et al.Experimental study on the temperature deviation of lower water wall in the ultra supercritical boiler[J].Hunan Electric Power,2017,37(3):56-58,82(in Chinese).
    [3]杨勇.1000MW超超临界压力直流锅炉螺旋管圈水冷壁的水动力及传热特性试验研究[D].上海:上海发电设备成套设计研究院,2010.Yang Yong.Experimental research on the dynamic and heat transfer characteristics of 1000MW USC pressure once-through boiler spiral water-wall[D].Shanghai:Shanghai Power Generation Equipment Design and Research Institute,2010(in Chinese).
    [4]Wang Siyang,Yang Dong,Zhao Yunjie,et al.Heat transfer characteristics of spiral water wall tube in a1000MW ultra-supercritical boiler with wide operating load mode[J].Applied Thermal Engineering,2018,130:501-514.
    [5]舒印彪,张智刚,郭剑波,等.新能源消纳关键因素分析及解决措施研究[J].中国电机工程学报,2017,37(1):1-9.Shu Yinbiao,Zhang Zhigang,Guo Jianbo,et al.Study on key factors and solution of renewable energy accommodation[J].Proceedings of the CSEE,2017,37(1):1-9(in Chinese).
    [6]俞谷颖,张富祥,陈端雨,等.超(超)临界压力锅炉垂直管屏水冷壁水动力与热偏差调整建议[J].动力工程学报,2010,30(9):658-662.Yu Guying,Zhang Fuxiang,Chen Duanyu,et al.Suggestion on adjustment of hydrodynamic and thermal deviation of ultra-supercritical pressure boiler waterwall with vertical tube panel[J].Journal of Chinese Society of Power Engineering,2010,30(9):658-662(in Chinese).
    [7]樊泉桂.超临界及超超临界锅炉水冷壁壁温偏差研究[J].中国电力,2006,39(5):59-63.Fan Quangui.Research on the water wall temperature excursion in the supercritical and ultra supercritical boilers[J].Electric Power,2006,39(5):59-63(in Chinese).
    [8]叶向荣,黎华,李茂东,等.超临界锅炉垂直水冷壁管壁温度敏感性分析[J].广东电力,2010,23(8):41-44.Ye Xiangrong,Li Hua,Li Maodong,et al.Sensitivity analysis on outlet metal temperature of vertical water wall tube in supercritical boiler[J].Guangdong Electric Power,2010,23(8):41-44(in Chinese).
    [9]马巧春.超超临界锅炉水冷壁壁温异常原因分析[J].中国电力,2007,40(7):21-24.Ma Qiaochun.Reason analysis on the abnormal metal temperature on water wall tube of ultra supercritical boiler[J].Electric Power,2007,40(7):21-24(in Chinese).
    [10]李想.1000MW超超临界前后墙旋流对冲锅炉燃烧数值模拟[D].武汉:华中科技大学,2012.Li Xiang.Numerical simulation of coal combustion in a1000MW ultra-supercritical opposed swirling fired utility boiler[J].Wuhan:Huazhong University of Science and Technology,2012(in Chinese).
    [11]张世宏,刘正强,聂鑫,等.超超临界1000 MW机组锅炉水冷壁壁温偏差计算分析及对策[J].热力发电,2017,46(11):44-49.Zhang Shihong,Liu Zhengqiang,Nie Xin,et al.Water wall temperature deviation of an ultra-supercritical1000MW unit boiler:analysis and countermeasures[J].Thermal Power Generation,2017,46(11):44-49(in Chinese).
    [12]Wang Long,Yang Dong,Shen Zhi,et al.Thermalhydraulic calculation and analysis of a 600MWsupercritical circulating fluidized bed boiler with annular furnace[J].Applied Thermal Engineering,2016,95:42-52.
    [13]Pan Jie,Wu Gang,Yang Dong.Thermal-hydraulic calculation and analysis on water wall system of 600 MWsupercritical CFB boiler[J].Applied Thermal Engineering,2015,82:225-236.
    [14]卢欢,杨冬,周旭,等.超临界直流锅炉水冷壁压降及出口汽温计算[J].西安交通大学学报,2011,45(1):38-42.Lu Huan,Yang Dong,Zhou Xu,et al.Calculation of pressure drop and outlet steam temperature of water wall pipes for supercritical once-through boiler[J].Journal of Xi'an Jiaotong University,2011,45(1):38-42(in Chinese).
    [15]Pan Jie,Yang Dong,Chen Gongming,et al.Thermalhydraulic analysis of a 600 MW supercritical CFB boiler with low mass flux[J].Applied Thermal Engineering,2012,32:41-48.
    [16]上海发电设备所.JB/Z 201-1983电站锅炉水动力计算方法[S].上海:上海发电设备成套设计研究所,1983.Shanghai Power Plant.JB/Z 201-1983 The national standard of the boiler hydrodynamics calculation[S].Shanghai:Shanghai Power Equipment Research Institute,1983(in Chinese).
    [17]樊泉桂.超临界和超超临界锅炉水冷壁的优化设计[J].动力工程,2006,26(4):457-461.Fan Quangui.Optimized design of water walls of supercritical and ultra supercritical boilers[J].Journal of Power Engineering,2006,26(4):457-461(in Chinese).
    [18]Zhu Xiaojing,Wang Weishu,Xu Weihui.A study of the hydrodynamic characteristics of a vertical water wall in a2953t/h ultra-supercritical pressure boiler[J].International Journal of Heat and Mass Transfer,2015,86:404-414.
    [19]吕宏彪,史恒惠.侧煤仓对冲燃烧锅炉一次风粉调平的试验研究[J].华电技术,2017,39(12):1-3,7.LüHongbiao,Shi Henghui.Side coal bunker opposed firing boiler primary air-powder balance test study[J].Huadian Technology,2017,39(12):1-3,7(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700