用户名: 密码: 验证码:
基于岩体扰动参数的边坡结构优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Way for optimizing the slope structure based on the rock mass disturbance parameters
  • 作者:李克钢 ; 张雪娅 ; 秦庆词 ; 张雪娇 ; 潘震
  • 英文作者:LI Ke-gang;ZHANG Xue-ya;QIN Qing-ci;ZHANG Xue-jiao;PAN Zhen;Faculty of Land Resources Engineering,Kunming University of Science and Technology;Beijing Hanwen Engineering Design Consulting Co., Ltd.;
  • 关键词:安全工程 ; 扰动参数 ; Hoek-Brown强度准则 ; 稳定性 ; 结构优化
  • 英文关键词:safety engineering;;disturbance parameters;;HoekBrown strength criterion;;stability;;structure optimization
  • 中文刊名:AQHJ
  • 英文刊名:Journal of Safety and Environment
  • 机构:昆明理工大学国土资源工程学院;北京瀚文工程设计咨询有限公司;
  • 出版日期:2019-06-25
  • 出版单位:安全与环境学报
  • 年:2019
  • 期:v.19;No.111
  • 基金:国家自然科学基金项目(41672303)
  • 语种:中文;
  • 页:AQHJ201903009
  • 页数:8
  • CN:03
  • ISSN:11-4537/X
  • 分类号:58-65
摘要
为了研究岩体扰动参数对边坡稳定性的影响,根据某露天边坡岩体物理性质及坡体钻孔勘探结果,分析了边坡体各岩组在不同扰动参数下的强度弱化过程;考虑由扰动产生的节理裂隙对边坡稳定性的影响,通过Phase~2软件对仿真计算模型进行了不同扰动程度的区域划分;同时提出了一种用于直观表征露天整天边坡稳定性的安全系数"玫瑰花"图。结果表明:各边帮受节理切割和爆破扰动的影响,稳定性差异较大,部分边帮安全储备充足,仍存在优化空间;节理裂隙几何位置对边坡失稳滑移面具有控制作用,对于近乎顺层岩质边坡,其破坏主要沿节理面剪切滑移;对于具有浅埋倾覆节理面边坡,由于岩体强度较高易发生倾倒破坏,所绘制的边坡安全系数"玫瑰花"图可直观表征露天边坡整体稳定性,考虑局部扰动影响对边坡稳定性分析进行精细化表征,为矿山边坡角度的进一步优化提供了一定的参考指标。
        The present paper is inclined to make an analysis of the deformation and failure features of the sloping body when the slope is divided into 2 different regions via Phase~2 software through disturbing according to the slope disturbance degrees.Based on the Hoek-brown criteria in the strength reduction method,we have chosen 5 typical profiles,and made an extremely careful assessment of the stability of the current slope. And,then,according to the analysis results,we have further optimized the slope structure. The analysis results can be shown as follows.The strength of each rock group in the open-air slope is different under the different disturbance parameters. Among them,the calcareous mudstone group has been weakened by the blasting disturbance intensity,and the fault rock group has later been influenced most slightly. After grading the rock mass,the blasting coefficient of the shallow surface layer and the slope foot is the largest,whereas the depth of the base rock is the smallest. Considering the influence of the joint fissures on the stability of the slopes,it can be concluded that the geometric position of the joint fissures has a controlling effect on the slope-stable slip surface. For the nearly bedding rock slopes,the main faults may take place due to the shear slip along the joint plane. If there is a shallow buried and overturned joint slope,the damage would come up mainly due to the high strength of the rock mass and the dumping risk. As is seen,the parameters that can optimize the current slope structure have just been supplied above. In addition,a safety factor in the rose-flower like map has been suggested which can be used to visually characterize the stability of each side of the open-air slope in favor for analyzing the stability of the entire slope. It can directly reflect the stability of the open slope and provide better means of expression of the stability for the open-pit mine slope. What is more,the expression of the stability of the open slope can also provide an effective theoretical basis for further optimization of the slope angle of the mine.
引文
[1] CAI Meifeng(蔡美峰),ZHU Qingshan(朱青山),QIAO Lan(乔兰),et al. Stability analysis and optimization design of open pit slope in Dading Iron Mine[J]. Journal of University of Science and Technology Beijing(北京科技大学学报),2012,34(3):239-245.
    [2] CAI Qingxiang(才庆祥),ZHOU Wei(周伟),SHU Jisen(舒继森),et al. Analysis and application of time effect of end-face slope in large-scale near-level open-pit coal mine[J]. Journal of China University of Mining&Technology(中国矿业大学学报),2008,37(6):740-744.
    [3] HAN Liu(韩流),ZHOU Wei(周伟),SHU Jisen(舒继森),et al. Aging stability analysis and structural optimization of soft rock slope plane sliding[J]. Journal of China University of Mining&Technology(中国矿业大学学报),2014,42(3):395-401.
    [4] WANG Xinmin(王新民),KANG Qian(康虔),QIN Jianchun(秦健春),et al. Application of analytic hierarchy process-extension model in safety evaluation of rock slope stability[J]. Journal of Central South University:Science and Technology(中南大学学报:自然科学版),2013,44(6):2455-2462.
    [5] SUN Yuke(孙玉科). Study on the stability of China's open pit slope(中国露天矿边坡稳定性研究)[M]. Beijing:China Science and Technology Press,1998.
    [6] HOEK E,CARRANZA T C,CORKUM B. Hoek-Brown failure criterion—2002 edition[C]//Proceedings of the North American Rock Mechanics Society(NARMS-TAC).Toronto:University of Toronto Press,2002:267-273.
    [7] YAN Changbin(闫长斌),XU Guoyuan(徐国元). Improvement of Hoek-Brown formula and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering(岩石力学与工程学报),2005,24(22):4030-4035.
    [8] FENG Wenkai(冯文凯),WANG Qi(王琦),ZHANG Guangxin(张光鑫),et al. Improvement of Hoek-Brown criterion and its application to evaluation of mechanical strength of fractured rock mass in Daguangbao landslide[J]. Chinese Journal of Rock Mechanics and Engineering(岩石力学与工程学报),2017,6(S1):3448-3455.
    [9] WU Debin(巫德斌),XU Weiya(徐卫亚). Research on mechanical parameters of rock mass excavation based on Hoek-Brown criterion[J]. Journal of Hohai University:Natural Sciences(河海大学学报:自然科学版),2005,33(1):89-93.
    [10] XIA Kaizong(夏开宗),CHEN Congxin(陈从新),LIU Xiumin(刘秀敏),et al. Method for predicting rock mass mechanical parameters based on Hoek-Brown criterion of rock mass velocity and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering(岩石力学与工程学报),2013,32(7):1458-1466.
    [11] ZHU Hehua(朱合华),ZHANG Qi(张琦),ZHANG Lianyang(章连洋). Review of the progress and application of Hoek-Brown strength criterion[J]. Chinese Journal of Rock Mechanics and Engineering(岩石力学与工程学报),2013,32(10):1945-1963.
    [12] HOEK E,BROWN E T. Underground excavations in rock[M]. London:Institution of Mining and Metallurgy,1980:527.
    [13] BIENIAWSKI Z T. Rock mechanics design in mining and tunneling[M]. Rotterdam:Balkema,1984.
    [14] HOEK E,BROWN E T. The Hoek-Brown criterion—a1988 update[C]//CURRAN J C. Proceedings of the15th Canada Rock Mechanics Symposium. Toronto:University of Toronto,1988:31-38.
    [15] BIENIAWSKI Z T. Engineering rock mass classifications[M]. New York:Wiley,1989:251.
    [16] BIAN Kang(卞康),LIU Jian(刘健),HU Xunjian(胡训建),et al. Study on failure mode and dynamic response of intermittent rock mass slope with bedding layer[J]. Rock and Soil Mechanics(岩土力学),2018,39(8):3029-3037.
    [17] CUI Ming(崔明),LI Miao(李淼). Quantification for degree of disturbance of surrounding rock[J]. China Mining Magazine(中国矿业), 2015, 24(10):123-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700