用户名: 密码: 验证码:
西安地区PM_(2.5)中环境持久性自由基(EPFRs)性质及来源研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the properties and sources of environmental persistent free radicals (EPFRs) in PM_(2.5) in Xi′an
  • 作者:孙浩堯 ; 陈庆彩 ; 牟臻 ; 王羽 ; 沈振兴 ; 张立欣 ; 李艳广
  • 英文作者:SUN Haoyao;CHEN Qingcai;MU Zhen;WANG Yuqin;SHEN Zhenxing;ZAHNG Lixin;LI Yanguang;School of Environmental Science and Engineering,Shaanxi University of Science and Technology;School of Energy and Power Engineering,Xi′an Jiaotong University;Xi′an Center of Geological Survey,China Geological Survey;
  • 关键词:类黑碳物质 ; PM_(2.5) ; 持久性自由基 ; 羟基自由基
  • 英文关键词:black carbon-like substance;;PM_(2.5);;EPFRs;;hydroxyl radical
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:陕西科技大学环境科学与工程学院;西安交通大学能源与动力工程学院;中国地质调查局西安地质调查中心;
  • 出版日期:2018-10-23 14:30
  • 出版单位:环境科学学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金(No.41703102);; 陕西省自然科学基金面上项目(No.2018JM4011);; 陕西省自然科学基金青年项目(No.2017JQ5115)
  • 语种:中文;
  • 页:HJXX201901023
  • 页数:7
  • CN:01
  • ISSN:11-1843/X
  • 分类号:199-205
摘要
环境持久性自由基(environmental persistent free radicals, EPFRs)是一种近年来备受关注的环境风险物质,可能会危害人体健康.本研究利用溶剂萃取方法从西安市大气PM_(2.5)样品中分离出物质,运用电子顺磁共振波谱(EPR)技术分析了不同大气污染状况下大气PM_(2.5)样品及类黑碳成分中EPFRs的种类和含量,并分别测定PM_(2.5)和类黑碳成分催化H_2O_2产生羟基自由基的能力.结果表明:PM_(2.5)中的EPFRs约有85%~90%是由类黑碳成分产生的.可见光照(400~700 nm)前后,PM_(2.5)样品中EPFRs的含量增加10%~20%.此外,实验结果亦表明PM_(2.5)中能催化H_2O_2产生羟基自由基的物质主要是PM_(2.5)中水溶性物质而不是类黑碳.大气PM_(2.5)中的EPFRs没有显著催化H_2O_2产生羟基自由基的能力,也不能将O_2分子转化为活性氧物质.
        Environmental persistent free radicals(EPFRs) are environmental risk substances that have received much attention in recent years, which may have serious effects on human health. In this study, a solvent-extraction method was used to separate the BC-like(black carbon like) substance from the atmospheric PM_(2.5) samples in Xi′an. The types and concentrations of EPFRs in PM_(2.5) and BC-like substance were analyzed under different atmospheric pollution conditions with electron paramagnetic resonance(EPR) spectroscopy, respectively as well as the ability of catalyzing H_2O_2 to generate hydroxyl radicals. The results showed that about 85%~90% of the EPFRs in PM_(2.5) were produced by the BC-like substance. Before and after the visible light(400~700 nm), the content of EPFRs in PM_(2.5) increased by 10%~20%. In addition, it was found that the substances who could catalyze H_2O_2 to generate hydroxyl radicals in PM_(2.5) were mainly water-soluble substances rather than BC-like substance. And this experiment also found that EPFRs in atmospheric PM_(2.5) neither had significant ability to catalyze H_2O_2 to generate hydroxyl radicals nor converted O_2 molecules to generate reactive oxygen species.
引文
Antonini J M, Taylor M D, Leonard S S, et al. 2004. Metal composition and solubility determine lung toxicity induced by residual oil fly ash collected from different sites within a power plant[J]. Molecular & Cellular Biochemistry, 255(1/2): 257-265
    Arangio A M, Tong H, Socorro J, et al. 2016. Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles[J]. Atmospheric Chemistry & Physics, 16(20): 13105-13119
    Blakley R L, Henry D D, Smith C J. 2001. Lack of correlation between cigarette mainstream smoke particulate phase radicals and hydroquinone yield[J]. Food & Chemical Toxicology, 39(4): 401-406
    Chen Q, Sun H, Wang M, et al. 2018. Dominant fraction of EPFRs from Nonsolvent-Extractable organic matter in fine particulates over Xi′an, China[J]. Environmental Science & Technology, 52(17): 9646-9655
    Chen Q, Wang M, Wang Y, et al. 2018. Rapid determination of environmentally persistent free radicals (EPFRs) in atmospheric particles with a quartz sheet-based approach using electron paramagnetic resonance (EPR) spectroscopy[J]. Atmospheric Environment, 184: 140-145
    Cormier S A, Lomnicki S, Backes W, et al. 2006. Origin and health impacts of emissions of toxic by-products and fine particles from combustion and thermal treatment of hazardous wastes and materials[J]. Environ Health Perspect, 114(6):810-817
    Cruz A L, Cook R L, Lomnicki S M, et al. 2012. Effect of low temperature thermal treatment on soils contaminated with pentachlorophenol and environmentally persistent free radicals[J]. Environmental Science & Technology, 46(11):5971-5978
    D′Arienzo M, Gamba L, Morazzoni F, et al. 2017. Experimental and theoretical investigation on the catalytic generation of environmentally persistent free radicals from benzene[J]. The Journal of Physical Chemistry C, 121(17): 9381-9393
    Dellinger B, Lomnicki S, Khachatryan L, et al. 2007. Formation and stabilization of persistent free radicals[J]. Proceedings of the Combustion Institute International Symposium on Combustion, 31(1):521-528
    Dellinger B, Pryor W A, Cueto R, et al. 2001. Role of free radicals in the toxicity of airborne fine particulate matter[J]. Chemical Research in Toxicology, 14(10):1371-1377
    Fan J, Zhang R, Tao W K, et al. 2008. Effects of aerosol optical properties on deep convective clouds and radiative forcing[J]. Journal of Geophysical Research Atmospheres, 113(D8):1-16
    Fuertes A B, Arbestain M C, Sevilla M, et al. 2010. Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover[J]. Soil Research, 48(7): 618-626
    Ingram D J E, Tapley J G, Jackson R, et al. 1954. Paramagnetic resonance in carbonaceous solids[J]. Nature, 174(4434):797-798
    Gehling W, Dellinger B. 2013. Environmentally persistent free radicals and their lifetimes in PM2.5[J]. Environmental Science & Technology, 47(15): 8172-8178
    Khachatryan L, Dellinger B. 2011. Environmentally persistent free radicals (EPFRs)-2. Are free hydroxyl radicals generated in aqueous solutions?[J]. Environmental Science & Technology, 45(21): 9232-9239
    Künzli N, Mudway I S, G?tschi T, et al. 2006. Comparison of oxidative properties, light absorbance, and total and elemental mass concentration of ambient PM2.5 collected at 20 European sites[J]. Environmental Health Perspectives, 114(5):684-690
    Li Y, Henze D K, Jack D, et al. 2016. Assessing public health burden associated with exposure to ambient black carbon in the United States[J]. Science of the Total Environment, 539:515-525
    Lomnicki S, Truong H, Vejerano E, et al. 2008. Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter[J]. Environmental Science & Technology, 42(13):4982-4988
    Lyons M J, Spence J B. 1960. Environmental free radicals[J]. British Journal of Cancer, 14(4):703-708
    Myhre G. 2009. Consistency between satellite-derived and modeled estimates of the direct aerosol effect[J]. Science, 325(5937):187-190
    Nawrot T S, Kuenzli N, Sunyer J, et al. 2009. Oxidative properties of ambient PM2.5 and elemental composition Heterogeneous associations in 19 European cities[J]. Atmospheric Environment, 43(30):4595-4602
    秦莎莎, 侯斌, 赵国栋,等. 2017. 西安市2015年恶性肿瘤发病分析[J]. 中国卫生统计, 34(4):616-617
    任信荣,王会祥, 邵可声,等. 2002. 北京市大气OH自由基测量结果及其特征[J]. 环境科学, 23(4):24-27
    Shaltout A A, Boman J, Shehadeh Z F, et al. 2015. Spectroscopic investigation of PM2.5 collected at industrial, residential and traffic sites in Taif, Saudi Arabia[J]. Journal of Aerosol Science, 79: 97-108
    Thevenot P T, Saravia J, Jin N, et al. 2013. Radical-containing ultrafine particulate matter initiates epithelial-to-mesenchymal transitions in airway epithelial cells[J]. American Journal of Respiratory Cell & Molecular Biology, 48(2): 188-197
    Truong H, Lomnicki S, Dellinger B. 2010. Potential for misidentification of environmentally persistent free radicals as molecular pollutants in particulate matter[J]. Environmental Science & Technology, 44(6): 1933-1939
    Vejerano E, Rao G, Khachatryan L, et al. 2018. Environmentally persistent free radicals: Insights on a New Class of Pollutants[J]. Environmental Science & Technology, 52(5):2468-2481
    Vejerano E, Lomnicki S, Dellinger B. 2010. Formation and stabilization of combustion-generated environmentally persistent free radicals on an Fe(III)2O3/silica surface[J]. Environmental Science & Technology, 45(2): 589-594
    Wang P, Pan B, Li H, et al. 2018. The overlooked occurrence of environmentally persistent free radicals in an area with low-rank coal burning, Xuanwei, China[J]. Environmental Science & Technology, 52(3):1054-1061
    Yang L L, Liu G, Zheng M, et al. 2017. Highly elevated levels and particle-size distributions of environmentally persistent free radicals in haze-associated atmosphere[J]. Environmental Science & Technology, 51(14): 7936-7944
    Yeh T F, Syu J M, Cheng C, et al. 2010. Graphite oxide as a photocatalyst for hydrogen production from water[J]. Advanced Functional Materials, 20(14): 2255-2262
    Zhou L, Tang J, Ernst M, et al. 2001. Continuous measurement of baseline atmospheric carbon monoxide in western China[J]. Chinese Journal of Enviromental Science, 22(3):1-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700