用户名: 密码: 验证码:
双歧杆菌胞外多糖的特性及与宿主关系的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on Characteristics of Bifidobacterial Exopolysaccharides and Their Relationship with Host
  • 作者:姜陈波 ; 雍靖怡 ; 李楠
  • 英文作者:JIANG Chen-bo;YONG Jing-yi;LI Nan;State Key Laboratory of Dairy Biotechnology,Shanghai Engineering Research Centre of Dairy Biotechnology,Dairy Research Institute,Bright Dairy and Food Co.,Ltd.;
  • 关键词:双歧杆菌 ; 胞外多糖 ; 特性 ; 宿主
  • 英文关键词:bifidobacteria;;exopolysaccharides;;characteristics;;host
  • 中文刊名:SPKJ
  • 英文刊名:Science and Technology of Food Industry
  • 机构:光明乳业股份有限公司乳业研究院上海乳业生物工程技术研究中心乳业生物技术国家重点实验室;
  • 出版日期:2018-11-14 15:45
  • 出版单位:食品工业科技
  • 年:2019
  • 期:v.40;No.423
  • 基金:上海乳业生物工程技术研究中心能力提升项目(16DZ2280600)
  • 语种:中文;
  • 页:SPKJ201907061
  • 页数:7
  • CN:07
  • ISSN:11-1759/TS
  • 分类号:357-363
摘要
双歧杆菌是人类肠道菌群中的主要菌群之一,该菌属中的特定菌株能够对人类产生益生作用。双歧杆菌产生的胞外多糖(bifidobacterial exopolysaccharides,B-EPS)和特定菌株的多种益生作用密切相关,对理解菌株与宿主间的共生关系具有十分重要的作用。B-EPS的合成基因和结构在种内/种间存在高度差异性,能够影响双歧杆菌的肠道耐受和定殖能力,特异性调节宿主肠道菌群和免疫应答功能。因此,该文总结了B-EPS的来源、组成及结构特点,并重点分析了B-EPS与宿主关系的研究进展,以期为菌株筛选和B-EPS在功能食品领域中的应用提供理论指导。
        Bifidobacterium is one of the major genus in the human intestinal tract with specific strains in this genus having beneficial effects on humans. Exopolysaccharides produced by Bifidobacterium(B-EPS)are closely related to multiple probiotic functions and seem to be critical in understanding the commensalism between bifidobacteria and host. The synthesized genes and structures of B-EPS are highly differentiated within and between species,which can affect the intestinal tolerance and colonization ability of Bifidobacterium,and specifically regulate the intestinal flora and immune response function of host. Thus,in order to provide theoretical guidance for strain screening and the application of B-EPS in the functional food area,this review reviewed the origin and characteristics of structure and composition of B-EPS,focusing on the current research on the relationship between host and B-EPS.
引文
[1]Turroni F,Ventura M,Buttó L F,et al. Molecular dialogue between the human gut microbiota and the host:A Lactobacillus and Bifidobacterium perspective[J]. Cellular & Molecular Life Sciences,2014,71(2):183-203.
    [2]Fanning S,Hall L J,Cronin M,et al. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection[J]. PNAS,2012,109(6):2108-2113.
    [3]Ferrario C,Milani C,Mancabelli L,et al. Modulation of the eps-ome transcription of bifidobacteria through simulation of human intestinal environment[J]. Fems Microbiology Ecology,2016,92(4):1-11.
    [4]Sarkar A,Mandal S. Bifidobacteria-Insight into clinical outcomes and mechanisms of its probiotic action[J]. Microbiological Research,2016,192:159-171.
    [5]Rios-Covian D,Cuesta I,Alvarez-Buylla J R,et al. Bacteroides fragilis metabolises exopolysaccharides produced by bifidobacteria[J]. Bmc Microbiology,2016,16(1):150.
    [6]Ruiz L,Delgado S,Ruas-Madiedo P,et al. Bifidobacteria and their molecular communication with the immune system[J]. Frontiers in Microbiology,2017,8:2345.
    [7]Grimm V,Westermann C,Riedel C U. Bifidobacteria-host interactions--an update on colonisation factors[J]. Biomed Research International,2014,2014:960826.
    [8]Hidalgo-Cantabrana C,Sánchez B,Milani C,et al. Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp.[J]. Applied and Environmental Microbiology,2014,80(1):9-18.
    [9]Xu R H,Shen Q,Wu R Y,et al. Structural analysis and mucosal immune regulation of exopolysaccharide fraction from Bifidobacterium animalis RH[J]. Food and Agricultural Immunology,2017,28(6):1226-1241.
    [10]Li S J,Chen T T,Feng X,et al. The beneficial effect of exopolysaccharides from Bifidobacterium bifidum WBIN03 on microbial diversity in mouse intestine[J]. Journal of the Science of Food and Agriculture,2014,94(2):256-264.
    [11]Salazar N,Gueimonde M,Reyes-Gavilan C G D L,et al. Exopolysaccharides produced by lactic acid bacteria and bifidobacteria as fermentable substrates by the intestinal microbiota[J]. Critical Reviews in Food Science and Nutrition,2016,56(9):1440-1453.
    [12]Yan S,Zhao G Z,Liu X M,et al. Production of exopolysaccharide by Bifidobacterium longum isolated from elderly and infant feces and analysis of priming glycosyltransferase genes[J]. Rsc Advances,2017,7(50):31736-31744.
    [13]Prasanna P H P,Grandison A S,Charalampopoulos D. Bifidobacteria in milk products:an overview of physiological and biochemical properties,exopolysaccharide production,selection criteria of milk products and health benefits[J]. Food Research International,2014,55(2):247-262.
    [14]Nagaoka M,Hashimoto S,Shibata H,et al. Structure of a galactan from cell walls of Bifidobacterium catenulatum YIT4016[J]. Carbohydrate Research,1996,281(2):285-291.
    [15]Prasanna P H P,Grandison A S,Charalampopoulos D. Screening human intestinal Bifidobacterium strains for growth,acidification,EPS production and viscosity potential in low-fat milk[J]. International Dairy Journal,2012,23(1):36-44.
    [16]Wu M H,Pan T M,Wu Y J,et al. Exopolysaccharide activities from probiotic Bifidobacterium:immunomodulatory effects(on J774A.1 macrophages)and antimicrobial properties[J].International Journal of Food Microbiology,2010,144(1):104-110.
    [17]Inturri R,Molinaro A,Di L F,et al. Chemical and biological properties of the novel exopolysaccharide produced by a probiotic strain of Bifidobacterium longum[J]. Carbohydrate Polymers,2017,174(15):1172-1180.
    [18]姜陈波,洪青,杭锋. 乳酸菌胞外多糖构效关系的研究进展[J]. 乳业科学与技术,2017,40(4):30-35.
    [19]Altmann F,Kosma P,O’callaghan A,et al. Genome analysis and characterisation of the exopolysaccharide produced by Bifidobacterium longum subsp. longum 35624TM[J]. Plos One,2016,11(9):e0162983.
    [20]Bottacini F,Ventura M,Van S D,et al. Diversity,ecology and intestinal function of bifidobacteria[J]. Microbial Cell Factories,2014,13(Suppl 1):S4.
    [21]Zdorovenko E L,Kachala V V,Sidarenka A V,et al. Structure of the cell wall polysaccharides of probiotic bifidobacteria Bifidobacteriumbifidum BIM B-465[J]. Carbohydrate Research,2009,344(17):2417-2420.
    [22]Nagaoka M,Muto M,Yokokura T,et al. Structure of 6-deoxytalose-containing polysaccharide from the cell wall of Bifidobacterium adolescentis[J]. Journal of Biochemistry,1988,103(4):618-621.
    [23]Salazar N,Prieto A,Leal J A,et al. Production of exopolysaccharides by Lactobacillus and Bifidobacterium strains of human origin,and metabolic activity of the producing bacteria in milk[J]. Journal of Dairy Science,2009,92(9):4158-4168.
    [24]Salazar N,Ruasmadiedo P,Prieto A,et al. Characterization of exopolysaccharides produced by Bifidobacterium longum NB667 and its cholate-resistant derivative strain IPLA B667dCo[J]. Journal of Agricultural & Food Chemistry,2012,60(4):1028-1035.
    [25]Kohno M,Suzuki S,Kanaya T,et al. Structural characterization of the extracellular polysaccharide produced by Bifidobacterium longum JBL05[J]. Carbohydrate Polymers,2009,77(2):351-357.
    [26]Uemura Y,Matsumoto M. Chemical structure of the cell wall-associated polysaccharide of Bifidobacterium animalis subsp.lactis LKM512[J]. Glycoconjugate Journal,2014,31(8):555-561.
    [27]Leivers S,Hidalgo-Cantabrana C,Robinson G,et al. Structure of the high molecular weight exopolysaccharide produced by Bifidobacterium animalis subsp. lactis IPLA-R1 and sequence analysis of its putative eps cluster[J]. Carbohydrate Research,2011,346(17):2710-2717.
    [28]Xu R,Qian S,Ding X,et al. Chemical characterization and antioxidant activity of an exopolysaccharide fraction isolated from Bifidobacterium animalis RH[J]. European Food Research & Technology,2011,232(2):231-240.
    [29]Shang N,Xu R H,Li P L. Structure characterization of an exopolysaccharide produced by Bifidobacterium animalis RH[J]. Carbohydrate Polymers,2013,91(1):128-134.
    [30]Habu Y,Nagaoka M,Yokokura T,et al. Structural studies of cell wall polysaccharides from Bifidobacterium breve YIT 4010 and related Bifidobacterium species[J]. Journal of Biochemistry,1987,102(6):1423-1432.
    [31]Tone-Shimokawa Y,Toida T,Kawashima T. Isolation and structural analysis of polysaccharide containing galactofuranose from the cell walls of Bifidobacterium infantis[J]. Journal of Bacteriology,1996,178(1):317-320.
    [32]Hidalgo-Cantabrana C,López P,Gueimonde M,et al. Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and bifidobacteria[J]. Probiotics Antimicrob Proteins,2012,4(4):227-237.
    [33]Tahoun A,Masutani H,Elsharkawy H,et al. Capsular polysaccharide inhibits adhesion of Bifidobacterium longum 105-A to enterocyte-like Caco-2 cells and phagocytosis by macrophages[J]. Gut Pathogens,2017,9(1):27.
    [34]Ruas-Madiedo P,Gueimonde M,Arigoni F,et al. Bile affects the synthesis of exopolysaccharides by Bifidobacterium animalis[J]. Applied & Environmental Microbiology,2009,75(4):1204-1207.
    [35]Yang X,Hang X,Tan J,et al. Differences in acid tolerance between Bifidobacterium breve BB8 and its acid-resistant derivative B. breve BB8dpH,revealed by RNA-sequencing and physiological analysis[J]. Anaerobe,2015,33:76-84.
    [36]Jin J,Qin Q,Guo H,et al. Effect of pre-stressing on the acid-stress response in Bifidobacterium revealed using proteomic and physiological approaches[J]. Plos One,2015,10(2):e0117702.
    [37]González-Rodríguez I,Ruiz L,Gueimonde M,et al. Factors involved in the colonization and survival of bifidobacteria in the gastrointestinal tract[J]. Fems Microbiology Letters,2013,340(1):1-10.
    [38]López P,Monteserín D C,Gueimonde M,et al. Exopolysaccharide-producing Bifidobacterium strains elicit different in vitro responses upon interaction with human cells[J]. Food Research International,2012,46(1):99-107.
    [39]Ruasmadiedo P,Gueimonde M,Margolles A,et al. Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus[J]. Journal of Food Protection,2006,69(8):2011-2015.
    [40]Salazar N,Gueimonde M,Hernándezbarranco A M,et al. Exopolysaccharides produced by intestinal Bifidobacterium strains act as fermentable substrates for human intestinal bacteria[J]. Applied and Environmental Microbiology,2008,74(15):4737-4745.
    [41]Salazar N,Ruasmadiedo P,Kolida S,et al. Exopolysaccharides produced by Bifidobacterium longum IPLA E44 and Bifidobacterium animalis subsp. lactis IPLA R1 modify the composition and metabolic activity of human faecal microbiota in pH-controlled batch cultures[J]. International Journal of Food Microbiology,2009,135(3):260-267.
    [42]Salazar N,Binetti A,Gueimonde M,et al. Safety and intestinal microbiota modulation by the exopolysaccharide-producing strains Bifidobacterium animalis IPLA R1 and Bifidobacterium longum IPLA E44 orally administered to Wistar rats[J]. International Journal of Food Microbiology,2011,144(3):342-351.
    [43]Serafini F,Strati F,Ruas-Madiedo P,et al. Evaluation of adhesion properties and antibacterial activities of the infant gut commensal Bifidobacterium bifidum PRL2010[J]. Anaerobe,2013,21(6):9-17.
    [44]Liu L,Li H,Xu R H,et al. Expolysaccharides from Bifidobacterium animalis RH activates RAW 264.7 macrophages through toll-like receptor 4[J]. Food and Agricultural Immunology,2017,28(1):149-161.
    [45]Hidalgo-Cantabrana C,Sánchez B,Alvarez-Martín P,et al. A single mutation in the gene responsible for the mucoid phenotype of Bifidobacterium animalis subsp. lactis confers surface and functional characteristics[J]. Applied & Environmental Microbiology,2015,81(23):7960-7968.
    [46]Schiavi E,Gleinser M,Molloy E,et al. The surface-associated exopolysaccharide of Bifidobacterium longum 35624 plays an essential role in dampening host proinflammatory responses and repressing local TH17 responses[J]. Applied and Environmental Microbiology,2016,82(24):7185-7196.
    [47]Schiavi E,Plattner S,Rodriguezperez N,et al. Exopolysaccharide from Bifidobacterium longum subsp. longum 35624TM modulates murine allergic airway responses[J]. Beneficial Microbes,2018:1-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700