用户名: 密码: 验证码:
基于临界失效能密度判据的热障涂层热震损伤行为研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermal Shock Damage Behaviour of Thermal Barrier Coatings Based on the Failure Energy Density Criteria
  • 作者:李定玉 ; 王如转 ; 李卫国 ; 郑恒伟 ; 王小荣
  • 英文作者:LI Ding-yu;WANG Ru-zhuan;LI Wei-guo;ZHENG Heng-wei;WANG Xiao-rong;Chongqing University of Science and Technology;Chongqing University;
  • 关键词:热障涂层 ; 失效能密度 ; 热震 ; 有限元 ; 损伤
  • 英文关键词:thermal barrier coating;;failure energy density;;thermal shock;;finite element method;;damage
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:重庆科技学院;重庆大学;
  • 出版日期:2019-01-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金项目(11602043,11602044,11602042);; 重庆市基础科学与前沿技术研究项目(cstc2017jcyjAX0240);; 重庆市教育委员会科学技术研究项目(KJ1713323)~~
  • 语种:中文;
  • 页:BMJS201901009
  • 页数:6
  • CN:01
  • ISSN:50-1083/TG
  • 分类号:69-74
摘要
目的探索热障涂层系统(TBCs)在热震过程中的损伤行为。方法基于材料能量储存极限,推导了适用于平面复杂应力情形的温度相关性临界失效能密度判据,进而利用该临界失效能密度判据与ABAQUS有限元软件相结合,研究了热生长氧化层(TGO)凸起的热障涂层系统在冷却热震过程中的损伤行为。结果对于TGO层凸起的热障涂层系统,计算了冷却热震过程中陶瓷层(TC)和TGO层的失效能密度分布云图,并根据最大失效能分布情况分析了TBCs在热震过程中各层材料的可能破坏位置,所得结果与实验吻合较好。在对TBCs的冷却热震损伤行为模拟计算中发现,当TC层的强度比较低时,热震会使TC层上表面产生往内部扩展的垂直裂纹;当TC层强度达到某一定值时,首先发生热震破坏的位置由TC层上表面变成了TGO层与粘结层(BC)的界面处,即TBCs的各层破坏顺序发生了变化。结论使用临界失效能密度准则来判断热障涂层在冷却热震过程中的损伤行为,比单纯使用某一方向应力更为准确,并能准确判断损伤起始位置和演化情况,从而更全面地反映热障涂层在热震过程中的损伤破坏行为。
        The work aims to investigate the damage behavior of thermal barrier coating system(TBCs) during the thermal shock. The temperature-dependent failure energy density criteria was deduced based on the energy storage limitation of material for plane complex stress condition. With the criteria and ABAQUS finite element software, thermal shock damage behavior of raised TBCs in the thermally grown oxide(TGO) was studied. The distribution of failure energy density in top-coat(TC) and TGO during cooling thermal shock was calculated for the raised TBCs in TGO and the damaged location of each layer in TBCs during the thermal shock was analyzed according to the maximum failure energy distribution. The obtained results agreed well with the experiment results. Furthermore, the simulation of thermal shock damage evolution behavior for TBCs showed that vertical cracks growth towards inside layer could be produced in TC under thermal shock when the strength of TC was relative lower. However, the firstly damaged location could change to the interface between TGO and BC(bond-coat) from the upper surface of TC when the strength of TC reached a certain value. The damage order of each layer in TBCs changed. Therefore, the failure energy density criteria is more accurate to characterize the thermal shock damage behavior of TBCs than the stress of one direction and can also determine the exact location of damage initiation and the evolution of damage, thus revealing the thermal shock failure for TBCs comprehensively.
引文
[1]PADTURE N P,GELL M,JORDAN E H.Thermal barrier coatings for gas-turbine engine applications[J].Science,2002,296(5566):280-284.
    [2]CHEN L B.Yttria-stabilized zirconia thermal barrier coatings-A review[J].Surface review and letters,2006,13(5):535-544.
    [3]王铁军,范学领,孙永乐,等.重型燃气轮机高温透平叶片热障涂层系统中的应力和裂纹问题研究进展[J].固体力学学报,2016,37(6):477-517.WANG Tie-jun,FAN Xue-ling,SUN Yong-le,et al.The stress and cracks in the thermal barrier coating system:Areview[J].Chinese journal of solid mechanics,2016,37(6):477-517.
    [4]KUMAR V,BALASUBRAMANIAN K.Progress update on failure mechanisms of advanced thermal barrier coatings:A review[J].Progress in organic coatings,2016,90:54-82.
    [5]FREUND L B,SURESH S.Thin film materials:Stress,defect formation,and surface evolution[J].AIAA journal,2003,43:713-737.
    [6]ERDOGAN F.The crack problem for bonded non-homogeneous materials under antiplane shear loading[J].Journal of applied mechanics,1985,52(4):729.
    [7]EVANS A G,HE M Y,HUTCHINSON J W.Mechanics-based scaling laws for the durability of thermal barrier coatings[J].Progress in materials science,2001,46(3):249-271.
    [8]THOULESS M D,LI Z,DOUVILLE N J,et al.Periodic cracking of films supported on compliant substrates[J].Journal of the mechanics&physics of solids,2011,59(9):1927-1937.
    [9]CHEN Z B,WANG Z G,ZHU S J.Tensile fracture behavior of thermal barrier coatings on superalloy[J].Surface&coatings technology,2011,205(15):3931-3938.
    [10]SUN Y L,ZHANG W X,LI J G,et al.Local stress around cap-like portions of anisotropically and non-uniformly grown oxide layer in thermal barrier coating system[J].Journal of materials science,2013,48(17):5962-5982.
    [11]FAN X L,ZHANG W X,WANG T J,et al.Investigation on periodic cracking of elastic film/substrate system by the extended finite element method[J].Applied surface science,2011,257(15):6718-6724.
    [12]JIANG P,FAN X L,SUN Y L,et al.Competition mechanism of interfacial cracks in thermal barrier coating system[J].Materials and design,2017,132:559-566.
    [13]BIALA S M.Finite element analysis of stress distribution in thermal barrier coatings[J].Surface and coatings technology,2008,202(24):6002-6010.
    [14]JIANG J,XU B,WANG W,et al.Finite element analysis of the effects of thermally grown oxide thickness and interface asperity on the cracking behavior between the thermally grown oxide and the bond coat[J].Journal of engineering for gas turbines and power,2017,139:022504.
    [15]HILLE T S,NIJDAM T J,SUIKER A S J,et al.Damage growth triggered by interface irregularities in thermal barrier coatings[J].Acta materialia,2009,57(9):2624-2630.
    [16]张治彪.基于真实TGO界面形貌的热障涂层热应力及界面失效有限元分析[D].长沙:湘潭大学,2016.ZHANG Zhi-biao.The analysis of thermal stress and the crack propagation within real TGO interface in thermal barrier coatings by finite element modeling[D].Changsha:Xiangtan University,2016.
    [17]LEOFFEL K,ANAND L.A chemo-thermo-mechanically coupled theory for elastic-visco plastic deformation,diffusion,and volumetric swelling due to a chemical reaction[J].International journal of plasticity,2011,61(2):1409-1431.
    [18]LEOFFEL K,ANAND L,GASEM Z M.On modeling the oxidation of high-temperature alloys[J].Acta materialia,2013,61(2):399-424.
    [19]LI W,YANG F.The temperature-dependent fracture strength model for ultra-high temperature ceramics[J].Chinese journal of theoretical and applied mechanics,2010,26(2):235-239.
    [20]RABIEI A,EVANS A G.Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings[J].Acta materialia,2000,48(15):3963-3976.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700