用户名: 密码: 验证码:
某四组元复合推进剂的热分解规律研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermal Decomposition Rule of a Four Component Composite Propellant
  • 作者:黄伟佳 ; 陈明华 ; 安振涛 ; 姜志保
  • 英文作者:HUANG Wei-jia;CHEN Ming-hua;AN Zhen-tao;JIANG Zhi-bao;Department of Ammunition Engineering of Army Engineering University;Special Service Research Institute;
  • 关键词:推进剂 ; 热分解性能 ; 热分析动力学 ; 反应活化能
  • 英文关键词:propellant;;thermal decomposition property;;thermal analysis kinetics;;reaction activation energy
  • 中文刊名:JSCX
  • 英文刊名:Equipment Environmental Engineering
  • 机构:陆军工程大学弹药工程系;特种勤务研究所;
  • 出版日期:2019-05-25
  • 出版单位:装备环境工程
  • 年:2019
  • 期:v.16
  • 语种:中文;
  • 页:JSCX201905011
  • 页数:4
  • CN:05
  • ISSN:50-1170/X
  • 分类号:60-63
摘要
目的研究某四组元推进剂的热分解特性。方法进行差示扫描量热(DSC)和热重分析(TG)实验。结果分别得到了推进剂在不同温度下的DSC和TG曲线,以及同一温度下推进剂各单组分的DSC和TG曲线,并计算得到了不同升温速率下的反应动力学参数。结论推进剂的热失重主要分为三个阶段,150~220℃的范围主要为RDX的热分解,220~375℃的范围主要为AP热分解,375~515℃的范围主要为部分AP高温分解和橡胶分解。同时推进剂在200~237℃和337~385℃各出现了一个放热峰,在240~248℃出一个吸热峰。推进剂的吸热峰为推进剂中AP晶型转变的吸热峰,推进剂中两个放热峰分别是由于RDX热分解和AP的高温分解产生的。同时计算得到推进剂样品的活化能,推进剂的表观活化能在1.6×10~5~2.1×10~5J/mol的范围之间,随着热分解的进行,活化能先降低后升高。
        Objective To study the thermal decomposition characteristics of a four component propellant. Methods Differential scanning calorimetry(DSC) and thermogravimetric analysis(TG) experiments were carried out. Results DSC and TG curves of the propellant at different temperatures, as well as the DSC and TG curves of single propellant component at the same temperature were obtained, and the kinetic parameters of the reaction were calculated at different heating rates. Conclusion The thermal weight loss of the propellant is mainly divided into three stages. The range of 150~220 ℃ is mainly thermal decomposition of RDX, the range of 220~375 ℃ is mainly AP thermal decomposition, and the range of 375~515 ℃ is mainly the pyrolysis decomposition of AP and the decomposition of rubber. At the same time, the propellant has an exothermic peak at 200~237 ℃ and 337~385 ℃, and an endothermic peak at 240~248 ℃. The absorption peak of the propellant is the absorption peak of the AP crystal transition in the propellant, and the two exothermic peaks in the propellant are produced by the RDX thermal decomposition and the high temperature decomposition of the AP. At the same time, the activation energy of the propellant samples is calculated. The apparent activation energy of the propellant is in the range of 1.6×10~5~2.1×10~5 J/mol. With the thermal decomposition, the activation energy decreased first and then increased.
引文
[1]周东谟,刘向阳,王庆云,等.HTPB推进剂定应变老化损伤本构特性研究[J].推进技术,2017,38(2):442-448.
    [2]罗运军,刘晶如.高能固体推进剂研究进展[J].含能材料,2007,15(4):407-410.
    [3]庞爱民,郑剑.高能固体推进剂技术未来发展展望[J].固体火箭技术,2004,27(4):289-293.
    [4]张炜,鲍桐,周星,等.火箭推进剂[M].北京:国防工业出版社,2014:23-24.
    [5]张涛,陈明华,贾昊楠,等.热分解动力学在含能材料中的应用[J].爆破器材.2013,42(6):52-56.
    [6]癸二酸二辛酯技术说明书[Z].安全技术说明书编码:1406.
    [7]异佛尔酮二异氰酸酯技术说明书[Z].安全技术说明书编码:3007.
    [8]窦燕蒙,罗运军,李国平,等.储氢合金/AP/HTPB推进剂的热分解性能[J].火炸药学报,2012,35(3):66-67.
    [9]龚珊.碳基复合粒子的制备及其对高氯酸按热分解催化性能研究[D].哈尔滨:哈尔滨工业大学,2015.
    [10]CHATURVEDI S,DAVE P N A.Review on the Use of Nanometals as for the Thermal Decomposition of Ammonium Perchlorate[J].Journal of Saudi Chemical Society2013,17(2):135-149.
    [11]刘子如.含能材料热分析[M].北京:国防工业出版社,2008:211-214.
    [12]胡荣祖,高胜利,赵凤起,等.热分析动力学[M].第2版.北京:科学出版社,2008.
    [13]OZAWA T.A New Method of Analyzing Thermogravimetric Data[J].Bull Chem Soc Jpn,1965,38(11):1881-1886.
    [14]FLYNN J H,WALL L A.A Quick,Direct Method for the Determination of Activation Energy from Thermogravimetric Data[J].J Polym Sci Part B,1966(4):323-328.
    [15]STARINK M J.A New Method for the Derivation of Activationenergies from Experimnets Performed at Constant Heating Rate[J].Thermochim Acta,1996,288(1/2):97-104.
    [16]KISSINGER H E.Reaction Kinetics on Differential Thermal Analysis[J].Anal Chem,1957,29(11):1702-1706.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700