用户名: 密码: 验证码:
沙棘7个亚种与26个重要品种的遗传多样性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Genetic variation of 7 subspecies and 26 important cultivars in Hippophae rhamnoides
  • 作者:王罗云 ; 何彩云 ; 罗红梅 ; 张建国 ; 段爱国 ; 曾艳飞
  • 英文作者:WANG Luoyun;HE Caiyun;LUO Hongmei;ZHANG Jianguo;DUAN Aiguo;ZENG Yanfei;Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry;Experimental Center of Desert Forestry,Chinese Academy of Forestry;
  • 关键词:林木育种学 ; 沙棘亚种 ; 大果沙棘品种 ; 简单序列重复(SSR) ; 遗传多样性 ; 遗传分化
  • 英文关键词:forest tree breeding;;Hippophae rhamnoides subspecies;;big grain sea buckthorn cultivars;;SSR;;genetic diversity;;genetic difference
  • 中文刊名:ZJLX
  • 英文刊名:Journal of Zhejiang A & F University
  • 机构:中国林业科学研究院林业研究所国家林业和草原局林木培育重点实验室;中国林业科学研究院沙漠林业实验中心;
  • 出版日期:2019-08-02
  • 出版单位:浙江农林大学学报
  • 年:2019
  • 期:v.36;No.161
  • 基金:中国林业科学研究院林业研究所林木培育重点实验室专项资金资助项目(ZDRIF201706)
  • 语种:中文;
  • 页:ZJLX201904007
  • 页数:8
  • CN:04
  • ISSN:33-1370/S
  • 分类号:45-52
摘要
利用14个微卫星标记分析了沙棘Hippophae rhamnoides 7个亚种和26个大果沙棘品种的遗传多样性,采用系统发育树和贝叶斯聚类方法分析了这些个体的聚类情况。结果显示:中国沙棘H. rhamnoides subsp. sinensis和云南沙棘H. rhamnoides subsp. yunnanensis遗传多样性水平最高,高加索沙棘H. rhamnoides subsp. caucasica最低。系统发育树将所有个体聚为2个大支:亚洲分支和欧洲分支。大部分大果沙棘品种与亚洲的蒙古沙棘H. rhamnoides subsp. mongolica聚为1支,少量个体位于亚洲分支和欧洲分支之间。贝叶斯聚类分析将所有个体划分为3组或7组:分3组时,中国沙棘和云南沙棘为一组,蒙古沙棘和大部分大果沙棘品种为一组,溪生沙棘H. rhamnoides subsp. fluviatilis,高加索沙棘和海滨沙棘H. rhamnoides subsp. rhamnoides为一组;分7组时,除海滨沙棘由溪生沙棘组和高加索沙棘组共同构成外,其他亚种和大果沙棘品种各自为一组,并发现少量组间混合基因型。表明沙棘种下亚种间分化明显,亚洲和欧洲分布的沙棘亚种间的分化尤为明显;大果沙棘品种大部分源于蒙古沙棘亚种,个别品种可能为蒙古沙棘和欧洲沙棘亚种间的杂交后代。
        Hippophae rhamnoides have important ecological, economic and social benefits, so it is essential to understand the genetic variation of the species. Genetic diversity on 14 microsatellite loci was estimated for seven H. rhamnoides subspecies and 26 big grain sea buckthorn cultivars. The clustering of these individuals was analyzed by phylogenetic tree and Bayes cluster. Results indicated that H. rhamnoides subsp. sinensis had the highest genetic diversity, followed by H. rhamnoides subsp. yunnanensis; H. rhamnoides subsp. caucasica had the lowest genetic diversity. The phylogenetic tree based on individual genotypic distance classified all individuals into two big clades according to distribution, the Asian clade and the European clade. Most big grain sea buckthorn cultivars clustered with H. rhamnoides subsp. mongolica individuals collected from the Asian clade with a few individuals located between the two clades. The Bayesian cluster analysis found that all individuals could be classified into three or seven groups. For three groups, group one consisted of H. rhamnoides subsp. yunnanensis and H. rhamnoides subsp. sinensis; group two had the most cultivars and H. rhamnoides subsp. mongolica; and group three was H. rhamnoides subsp. fluviatilis, H. rhamnoides subsp. caucasica, and H. rhamnoides subsp. rhamnoides. For seven groups, all subspecies were classified into a different group with a few hybrids, and only H. rhamnoides subsp. rhamnoides showed a hybrid ancestry between H. rhamnoides subsp. fluviatilis and H. rhamnoides subsp. caucasica. There were also a few groups with mixed genotypes. Thus,genetic divergence among these seven H. rhamnoides subspecies was important, especially between subspecies distributed in different continents; whereas, big grain sea buckthorn cultivars were mostly selected from H.rhamnoides subsp. mongolica with a few of hybrid origin from H. rhamnoides subsp. mongolica and subspecies in Europe.
引文
[1] SUN K, CHEN X L, MA R J, et al. Molecular phylogenetics of Hippophae L.(Elaeagnaceae)based on the internal transcribed spacer(ITS)sequences of nrDNA[J]. Plant Syst Evol, 2002, 235(1/4):121-134.
    [2] BARTISH I V, JEPPSSON N, NYBOM H, et al. Phylogeny of Hippophae(Elaeagnaceae)inferred from parsimony analysis of chloroplast DNA and morphology[J]. Syst Bot, 2002, 27(1):41-54.
    [3] HAKEEM K R,?ZTüRK M, ALTAY V, et al. An alternative potential natural genetic resource:sea buckthorn[Elaeagnus rhamnoides(syn.:Hippophae rhamnoides)][C]//魻ZT譈RK M, HAKEE M KR, ASHRAF M, et al. Global Perspectives on Underutilized Crops. Cham:Springer International Publishing, 2018:25-82.
    [4]齐虹凌,于泽源,李兴国.沙棘研究概述[J].沙棘, 2005, 18(2):37-41.QI Hongling, YU Zeyuan, LI Xingguo. Summary of studies on seabuckthorn[J]. Hippophae, 2005, 18(2):37-41.
    [5] JIA Dongrui, ABBOTT R J, LIU Tengliang, et al. Out of the Qinghai-Tibet Plateau:evidence for the origin and dispersal of Eurasian temperate plants from a phylogeographic study of Hippophae rhamnoides(Elaeagnaceae)[J]. New Phytol, 2012, 194(4):1123-1133.
    [6]林赫杰,陈钰.沙棘研究现状、开发利用及发展前景[J].天津农业科学, 2010, 16(2):128-130.LIN Haojie, CHEN Yu. Research status, development and prospects of seabuckthorn[J]. Tianjin Agric Sci, 2010, 16(2):128-130.
    [7]黄铨,于倬德.沙棘研究[M].北京:科学出版社, 2006.
    [8]马玉花,冶贵生,向前胜,等.基于ITS序列探讨沙棘属植物的系统发育关系[J].应用生态学报, 2014, 25(10):2985-2990.MA Yuhua, YE Guisheng, XIANG Qiansheng, et al. Phylogenetic relationships of seabuckthorn based on ITS sequences[J]. Chin J Appl Ecol, 2014, 25(10):2985-2990.
    [9]李珊珊,曾艳飞,何彩云,等.基于沙棘转录组序列开发EST-SSR分子标记[J].林业科学研究, 2017, 30(1):69-74.LI Shanshan, ZENG Yanfei, HE Caiyun, et al. Development of EST-SSR markers based on seabuckthorn transcriptomic sequences[J]. For Res, 2017, 30(1):69-74.
    [10] PEAKALL R, SMOUSE P E. GenAlEx 6.5:genetic analysis in Excel. Population genetic software for teaching and research:an update[J]. Bioinformatics, 2012, 28(19):2537-2539.
    [11] DIERINGER D, SCHLOTTERER C. MICROSATELLITE ANALYSER(MSA):a platform independent analysis tool for large microsatellite data sets[J]. Mol Ecol Notes, 2003, 3(1):167-169.
    [12] WEIR B S, COCKERHAM C C. Estimating F-Statistics for the analysis of population structure[J]. Evolution, 1984,38(6):1358-1370.
    [13] CAVALLI S L L, EAWARDS A W F. Phylogenetic analysis:models and estimation procedures[J]. Am J Human Genet, 1967, 19(1/3):233-257.
    [14] FELSENSTEIN J. PHYLIP:phylogeny inference package, Version 3.695[CP/OL]. Seattle:Department of Genome Sciences, University of Washington, 2013.
    [15] FALUSH D, STEPHENS, M, PRITCHARD J K. Inference of population structure using multilocus genotype data:dominant markers and null alleles[J]. Mol Ecol Notes, 2007, 7(4):574-578.
    [16] EARL D A. STRUCTURE HARVESTER:a website and program for visualizing STRUCTURE output and implementing the Evanno method[J]. Conserv Genet Resour, 2012, 4(2):359-361.
    [17] EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters in individuals using the software STRUCTURE:a simlation study[J]. Mol Ecol, 2005, 14(8):2611-2620.
    [18]廉永善,陈学林.沙棘属植物的系统分类[J].沙棘, 1996, 9(1):15-24.LIAN Yongshan, CHEN Xuelin. Systematic classification of seabuckthorn plants[J]. Hippophae, 1996, 9(1):15-24.
    [19]陈纹.沙棘属几个中国特有类群的遗传多样性研究[D].兰州:西北师范大学, 2004.CHEN Wen. The Study of Genetic Diversity of Three Endemic Taxa of Hippophae in China[D]. Lanzhou:Northwest Normal University, 2004.
    [20]刘雨娜,于泽源,李兴国. 24个大果沙棘品种的RAPD分析[J].果树学报, 2007, 24(2):230-233.LIU Yuna, YU Zeyuan, LI Xingguo. RAPD analysis of 24 big grain seabuckthorns(Hippophae rhamnoides)[J]. J Fruit Sci, 2007, 24(2):230-233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700