用户名: 密码: 验证码:
g-C_3N_4/Ag/α-FeOOH对磺胺嘧啶的光催化降解效果评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect Evaluation of Photocatalytic Degradation of Sulfadiazine by g-C_3N_4/Ag/α-FeOOH
  • 作者:赵芙蓉 ; 王飞 ; 耿环环 ; 韩晓敏
  • 英文作者:ZHAO Furong;WANG Fei;GENG Huanhuan;HAN Xiaomin;School of Energy & Environmental Engineering,University of Science and Technology Beijing;
  • 关键词:磺胺嘧啶 ; g-C3N4/Ag/α-FeOOH ; 光降解
  • 英文关键词:sulfadiazine;;g-C3N4/Ag/α-FeOOH;;photodegradation
  • 中文刊名:HBHG
  • 英文刊名:Chemistry & Bioengineering
  • 机构:北京科技大学能源与环境工程学院;
  • 出版日期:2019-01-25
  • 出版单位:化学与生物工程
  • 年:2019
  • 期:v.36;No.264
  • 基金:国家自然科学基金项目(41473096,41822706)
  • 语种:中文;
  • 页:HBHG201901004
  • 页数:5
  • CN:01
  • ISSN:42-1710/TQ
  • 分类号:24-28
摘要
采用水热法和光沉积法成功制备了三元催化剂g-C_3N_4/Ag/α-FeOOH,利用红外光谱(IR)、X-射线衍射(XRD)和扫描电镜(SEM)表征了g-C_3N_4/Ag/α-FeOOH的组分、晶型和形貌,并研究了其对可见光下磺胺嘧啶(SD)的催化降解性能。结果表明:g-C_3N_4和α-FeOOH成功结合,贵金属Ag在α-FeOOH表面沉积;g-C_3N_4/Ag/α-FeOOH具有较多孔型和较大的比表面积,能有效提高对可见光的利用率。光催化SD实验表明,SD的光降解反应符合一级反应动力学;在500 W氙灯的模拟太阳光照射下,10mg·L~(-1)的g-C_3N_4和α-FeOOH单独对SD的降解促进率分别达到73.75%和68.80%;g-C_3N_4/Ag/α-FeOOH对SD的催化性能比g-C_3N_4和α-FeOOH都有明显提高,在投加量为10mg·L~(-1)时,达到最佳催化促进效果,降解促进率为107.50%。
        We prepared three-way catalyst g-C_3N_4/Ag/α-FeOOH successfully by a hydrothermal method and a photodeposition method,and characterized its component,crystal form,and morphology by IR,XRD,and SEM.Furthermore,we studied the photocatalytic degradation performance of g-C_3N_4/Ag/α-FeOOH to sulfadiazine(SD)under simulated visible light.The results show that g-C_3N_4 combines withα-FeOOH successfully,and the precious metal Ag deposits on the surface ofα-FeOOH.Moreover,g-C_3N_4/Ag/α-FeOOH hasrich porous structure and higher specific surface area,which can effectively improve the utilization of visible light.The photocatalytic SD experiment shows that the photodegradation of SD follows the first-order reaction kinetics.Under the simulated sunlight of 500 W xenon lamp,the degradation rate of SD by g-C_3N_4 andα-FeOOH can reach73.75%and 68.80%,respectively.The catalytic performance of g-C_3N_4/Ag/α-FeOOH to SD is significantly higher than that of g-C_3N_4 andα-FeOOH.The promotion rate can reach 107.50%,which is the most effective,when the dosage is 10 mg·L~(-1).
引文
[1]金明兰,刘凯,徐莹莹,等.污水处理厂中磺胺类抗生素、抗性菌、抗性基因的特性[J].环境工程,2015,33(11):1-4.JIN M L,LIU K,XU Y Y,et al.Characteristics of sulfonamide antibiotics,resistant bacteria,resistance genes in sewage treatment plant[J].Environmental Engineering,2015,33(11):1-4.
    [2]秦丽婷,童蕾,刘慧,等.环境中磺胺类抗生素的生物降解及其抗性基因污染现状[J].环境化学,2016,35(5):875-883.QIN L T,TONG L,LIU H,et al.Biodegradation of sulfonamides and the pollution characteristics of sulfonamide resistance genes in the environment[J].Environmental Chemistry,2016,35(5):875-883.
    [3]章强,辛琦,朱静敏,等.中国主要水域抗生素污染现状及其生态环境效应研究进展[J].环境化学,2014,33(7):1075-1083.ZHANG Q,XIN Q,ZHU J M,et al.The antibiotic contaminations in the main water bodies in China and the associated environmental and human health impacts[J].Environmental Chemistry,2014,33(7):1075-1083.
    [4] YAN S,SONG W.Photo-transformation of pharmaceutically active compounds in the aqueous environment:a review[J].Environmental Science-Processes&Impacts,2014,16(4):697-720.
    [5] BOREEN A L,ARNOLD W A,MCNEILL K.Photodegradation of pharmaceuticals in the aquatic environment:a review[J].Aquatic Sciences,2003,65(4):320-341.
    [6]张方方,魏振康,霍喜.臭氧高级氧化技术降解水体中抗生素的研究进展[J].四川化工,2016,19(2):27-30.ZHANG F F,WEI Z K,HUO X.The advanced oxidation technologies of ozone degradation of the research progress of antibiotics in water[J].Sichuan Chemical Industry,2016,19(2):27-30.
    [7]崔玉民,殷榕灿,苗慧,等.石墨相氮化碳光催化剂研究进展[J].化工新型材料,2017,45(10):55-57.CUI Y M,YIN R C,MIAO H,et al.Research progress of graphitic carbon nitride in photocatalysis[J].Chemical Industry and Engineering Progress,2017,45(10):55-57.
    [8] PINTO I S X,PACHECO P H V V,COELHO J V,et al.Nanostructuredδ-FeOOH:an efficient Fenton-like catalyst for the oxidation of organics in water[J].Applied Catalysis B:Environmental,2012,119-120:175-182.
    [9] XIONG Y,XIE Y,CHEN S,et al.Fabrication of self-supported patterns of alignedβ-FeOOH nanowires by a low-temperature solution reaction[J].Chemistry-A European Journal,2003,9(20):4991-4996.
    [10] PADHI D K,PANIGRAHI T K,PARIDA K,et al.Green synthesis of Fe3O4/RGO nanocomposite with enhanced photocatalytic performance for Cr(Ⅵ)reduction,phenol degradation,and antibacterial activity[J].ACS Sustainable Chemistry&Engineering,2017,5(11):10551-10562.
    [11]孙粉玲,丁佳锋,周时洋,等.针铁矿催化氧化溴酚生成羟基多溴联苯醚和溴代二噁英[J].环境化学,2015,34(9):1581-1586.SUN F L,DING J F,ZHOU S Y,et al.Formation of hydroxylated polybrominated diphenyl ethers and polybrominated dibenzop-dioxins via goethite-catalyzed oxidation of bromophenols[J].Environmental Chemistry,2015,34(9):1581-1586.
    [12] BOONPRAKOB N,WETCHAKUN N,PHANICHPHANT S,et al.Enhanced visible-light photocatalytic activity of g-C3N4/TiO2films[J].Journal of Colloid and Interface Science,2014,417(3):402-409.
    [13]史振涛.石墨相氮化碳的制备及其光催化性能的研究[D].上海:东华大学,2015.SHI Z T.Preparation and photocatalytic properties of graphite phase carbon nitrid[D].Shanghai:Donghua University,2015.
    [14] RAHIMI S,MOATTARI R M,RAJABI L,et al.Iron oxide/hydroxide(α,γ-FeOOH)nanoparticles as high potential adsorbents for lead removal from polluted aquatic media[J].Journal of Industrial and Engineering Chemistry,2015,23:33-43.
    [15]王宇航.ZnFe2O4/ZnO/Ag异质结的制备及光催化性能研究[J].化学与生物工程,2018,35(9):41-44.WANG Y H.Preparation of ZnFe2O4/ZnO/Ag heterojunction and its photocatalytic performance[J].Chemistry&Bioengineering,2018,35(9):41-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700