用户名: 密码: 验证码:
植物对蚜虫危害的防御响应研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in Research of Plant Defense Response to Aphid Attack
  • 作者:杨珍 ; 钟肖 ; 冯佩 ; 马琪琪 ; 苏奇 ; 王香萍 ; 张建民
  • 英文作者:Yang Zhen;Zhong Xiao;Feng Pei;Ma Qiqi;Su Qi;Wang Xiangping;Zhang Jianmin;College of Agriculture, Yangtze University/Institute of Entomology;
  • 关键词:植物 ; 蚜虫 ; 防御响应 ; 信号传导 ; 基因
  • 英文关键词:Plant;;Aphid;;Defensive response;;Signal transduction;;Gene
  • 中文刊名:AGRI
  • 英文刊名:Shandong Agricultural Sciences
  • 机构:长江大学农学院/昆虫研究所;
  • 出版日期:2019-01-16 09:36
  • 出版单位:山东农业科学
  • 年:2019
  • 期:v.51;No.330
  • 基金:国家自然科学基金面上项目“棉花基因GhRAC6对棉蚜的抗性功能分析”(31471783)
  • 语种:中文;
  • 页:AGRI201902032
  • 页数:6
  • CN:02
  • ISSN:37-1148/S
  • 分类号:173-178
摘要
蚜虫是重要的世界性经济害虫,除通过摄取植物营养造成伤害外,在取食期间还可间接传播多种植物病毒病,严重影响作物的产量和质量。利用植物对蚜虫的防御机制控制蚜虫是一种环境友好型防治方法。本研究主要综述了植物防御蚜虫的策略,包括组成型防御和诱导型防御、蚜虫危害信号的传导及其特异性、各信号途径的对抗与协作及抗蚜基因的应用现状,探讨了存在的问题并对今后的发展方向进行了展望。
        Aphid is one of the important worldwide pests. In addition to the damage caused by ingestion of plant nutrition, a variety of plant virus diseases are also transmitted indirectly during feeding, which seriously affects the yield and quality of crops. Using plant resistance to prevent and control aphids is an environmentally friendly method. In this paper, we mainly reviewed the defense strategies of plants to aphids, including the constitutive defense and induced defense, the transmission and specificity of aphid damage signals, the confrontation and collaboration of signal pathways, and the application situation of aphid-resistant genes in plants. The existing problems were also discussed and the outlook of development direction of plant resistance to aphid in the future were put forward.
引文
[1] 袁亮, 郭慧娟, 孙玉诚, 等. 蚜虫诱导的植物免疫反应[J]. 应用昆虫学报, 2015, 52(1): 23-31.
    [2] Santamaria M E, Martínez M, Cambra I, et al. Understanding plant defence responses against herbivore attacks: an essential first step towards the development of sustainable resistance against pests[J]. Transgenic Research, 2013, 22(4): 697-708.
    [3] 陈明顺, 仵均祥, 张国辉. 植物诱导性直接防御[J]. 昆虫知识, 2009, 46 (2): 175-186.
    [4] Smith C M, Clement S L. Molecular bases of plant resistance to arthropods[J]. Annual Review of Entomology, 2012, 57(57): 309-328.
    [5] 陆宴辉, 杨益众, 印毅, 等. 棉花抗蚜性及抗性遗传机制研究进展[J]. 昆虫知识, 2004, 41(4): 291-294.
    [6] 胥苡. 小麦抗蚜性与次生代谢物的相关性研究[J]. 安徽农业科学, 2015, 43(22): 123-124, 127.
    [7] 朱俊洪, 程立生. 植物次生性物质与植物抗虫性的关系及其在害虫防治中的应用前景[J]. 华南热带农业大学学报, 2001, 7(1): 26-32.
    [8] 马荣金, 李田田, 刘桂军, 等. 不同黄瓜材料抗蚜性与部分次生代谢物及其相关酶活力的关系[J]. 中国农学通报, 2015, 31(19): 80-86.
    [9] 陈敏炀, 梁郸娜, 陈学好. 瓜类作物抗蚜研究进展[J]. 分子植物育种, 2017, 15(9): 3803-3810.
    [10] 刘旭明, 杨奇华. 棉花抗蚜的生理生化机制及其与棉蚜种群数量消长关系的研究[J]. 植物保护学报, 1993, 20(1): 25-29.
    [11] 张苏芳, 孔祥波, 王鸿斌, 等. 植物对昆虫不同防御类型及内在联系[J]. 应用昆虫学报, 2013, 50(5): 1428-1437.
    [12] Dixon A F G. Stabilization of aphid populations by an aphid induced plant factor[J]. Nature, 1970, 227(5265): 1368.
    [13] Züst T, Agrawal A A. Mechanisms and evolution of plant resistance to aphids[J]. Nature Plants, 2016, 2(1): 15206.
    [14] 武德功, 王俊, 张露雨, 等. 抗、感玉米幼苗玉米蚜为害后不同时间的生理响应[J]. 江苏农业学报, 2018, 34(3): 493-502.
    [15] 马惠, 王琦, 赵鸣, 等. 非生物胁迫对棉花次生代谢及棉蚜种群消长的影响[J]. 棉花学报, 2016, 28(4): 324-330.
    [16] Tan X L, Liu T X. Aphid-induced plant volatiles affect the attractiveness of tomato plants to Bemisia tabaci and associated natural enemies[J]. Entomologia Experimentalis Et Applicata, 2014, 151(3): 259-269.
    [17] Prado E, Tjallingii W F. Behavioral evidence for local reduction of aphid-induced resistance[J]. Journal of Insect Science, 2007, 7:1-8.
    [18] Babikova Z, Gilbert L, Bruce T J A, et al. Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack[J]. Ecology Letters, 2013, 16(7): 835-843.
    [19] Walling L L. The myriad plant responses to herbivores[J]. J. Plant Growth Regul., 2000, 19(2): 195-216.
    [20] Smith C M, Boyko E V. The molecular bases of plant resistance and defense responses to aphid feeding: current status[J]. Entomologia Experimentalis Et Applicata, 2007, 122(1): 1-16.
    [21] Moran P J, Thompson G A. Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways[J]. Plant Physiology, 2001, 125(2): 1074-1085.
    [22] 张海静, 严盈, 彭露, 等. 韧皮部取食昆虫诱导的植物防御反应[J]. 昆虫学报, 2012, 55(6): 736-748.
    [23] Qiu A, Liu Z, Li J, et al. The ectopic expression of CaRop1 modulates the response of tobacco plants to Ralstonia solanacearum and aphids[J]. Frontiers in Plant Science, 2016, 7: 1177.
    [24] Foyer C H, Rasool B, Davey J W, et al. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation[J]. J. Exp. Bot., 67(7): 2025-2037.
    [25] Thompson G A, Goggin F L. Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects[J]. Journal of Experimental Botany, 2006, 57(4): 755-766.
    [26] Zhang Y, Fan J, Zhao X Y, et al. Effects of plant defense signal molecules jasmonic acid and salicylic acid on the expression of detoxification enzyme glutathione S-transferases and salivary protein C002 in Myzus persicae[J]. Sci. Sin. Vitae., 2016, 46(5): 665-672.
    [27] Li Q, Xie Q G, Smith-Becker J, et al. Mi-1-mediated aphid resistance involves salicylic acid and mitogen-activated pro-tein kinase signaling cascades[J]. Mol. Plant-Microbe Interact., 2006, 19(6): 655-664.
    [28] Park S J, Huang Y, Ayoubi P. Identification of expression profiles of sorghum genes in response to greenbug phloem feeding using cDNA subtraction and microarray analysis[J]. Planta, 2006, 223(5): 932-947.
    [29] Qubbaj T, Reineke A, Zebitz C P W. Molecular interactions between rosy apple aphids, Dysaphis plantaginea, and resistant and susceptible cultivars of its primary host Malus domestica[J]. Entomol. Exp. Appl., 2010, 115(1): 145-152.
    [30] Cooper W C, Jia L, Goggin F L. Acquired and R-gene-mediated resistance against the potato aphid in tomato[J]. Journal of Chemical Ecology, 2004, 30(12): 2527-2542.
    [31] Gao L L, Anderson J P, Klingler J P, et al. Involvement of the octadecanoid pathway in bluegreen aphid resistance in Medicago truncatula[J]. Mol. Plant-Microbe Interact., 2007, 20(1): 82-93.
    [32] Mao Y B, Liu Y Q, Chen D Y, et al. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance[J]. Nature communications, 2017, 8: 13925.
    [33] 黄智鸿, 刘洋, 史宝林, 等. 榆树叶片虫瘿形成过程中茉莉酸含量及相关防御酶活性的变化[J]. 河北农业大学学报, 2016, 39(3): 42-48.
    [34] Zhu-Salzman K, Salzman R A, Ahn J E, et al. Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid[J]. Plant Physiology, 2004, 134(1): 420-431.
    [35] Zhang J M, Ma L F, Li W, et al. Cotton TCTP1 gene encoding a translationally controlled tumor protein participates in plant response and tolerance to aphids[J]. Plant Cell, Tissue and Organ Culture, 2014, 117(2): 145-156.
    [36] Du B, Zhang W, Liu B, et al. Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice[J]. Proceedings of the National Academy of Sciences, 2009, 106(52): 22163-22168.
    [37] Ali J G, Agrawal A A. Asymmetry of plant-mediated interactions between specialist aphids and caterpillars on two milkweeds[J]. Functional Ecology, 2014, 28(6): 1404-1412.
    [38] Thaler J S, Agrawal A A, Halitschke R. Salicylate-mediated interactions between pathogens and herbivores[J]. Ecology, 2010, 91(4): 1075-1082.
    [39] 顾小辉, 魏建和, 王国全, 等. 虫害诱导植物合成防御性次生代谢产物的研究进展[J]. 生命科学研究, 2017, 21(5): 458-465, 470.
    [40] Winz R A, Baldwin I T. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. Ⅳ. Insect-induced ethylene reduces jasmonate-induced nicotine accumulation by regulating putrescine N-methyltransferase transcripts[J]. Plant Physiology, 2001, 125(4): 2189-2202.
    [41] 戈峰, 吴孔明, 陈学新. 植物-害虫-天敌互作机制研究前沿[J]. 应用昆虫学报, 2011, 48(1): 1-6.
    [42] Milligana S B, Bodeaua J, Yaghoobia J, et al. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes[J]. Plant Cell, 1998, 10(8): 1307-1319.
    [43] Kaloshian I. Gene-for-gene disease resistance: bridging insect pest and pathogen defense[J]. Journal of Chemical Ecology, 2004, 30(12): 2419-2438.
    [44] Hill C B, Chirumamilla A, Hartman G L. Resistance and virulence in the soybean-aphis glycines interaction[J]. Euphytica, 2012, 186(3): 635-646.
    [45] Alston F H, Briggs J B. Resistance genes in apple and biotypes of Dysaphis devecta[J]. Ann. Appl. Biol., 1997, 87(1):75-81.
    [46] Eenink A H, Groenwold R, Dieleman F L. Resistance of lettuce (Lactuca) to the leaf aphid Nasonovia ribis nigri. 1. Transfer of resistance from L. virosa to L. sativa by interspecific crosses and selection of resistant breeding lines[J]. Euphytica, 1982, 31(2): 291-299.
    [47] Yang C, Li G, Wang N, et al. The potential application of genes for aphid resistance in cotton breeding[J].Botanical Research,2017, 6(3): 124-133.
    [48] Boyko E V, Smith C M, Thara V K, et al. The molecular basis of plant gene expression during aphid invasion: wheat Pto- and Pti-like sequences are involved in interactions between wheat and Russian wheat aphid (Homoptera: Aphididae)[J]. Journal of Economic Entomology, 2006, 99(4): 1430-1445.
    [49] van der Arend A J M, Ester A,van Schijndel J T. Developing an aphid-resistant butterhead lettuce “dynamite”[M]//Lebeda A,Kristkova E(eds). Eucarpia Leafy Vegetables 99. Palacky University, Olomouc, Czech Republic,1999: 149-157.
    [50] Lombaert E, Carletto J, Piotte C, et al. Response of the melon aphid, Aphis gossypii, to host-plant resistance: evidence for high adaptive potential despite low genetic variability[J]. Entomol. Exp. Appl., 2009, 133(1): 46-56.
    [51] Dogimont C, Bendahmane A, Chovelon V, et al. Host plant resistance to aphids in cultivated crops: genetic and molecular bases, and interactions with aphid populations[J]. C. R. Biologies, 2010, 333(6/7): 566-573.
    [52] 郑彩玲, 刘向东, 翟保平, 等. 棉花型和黄瓜型棉蚜(Aphis gossypii Glover)的寄主适应性及转移通道[J]. 生态学报, 2007, 27(5): 1879-1886.
    [53] 邹先伟, 蒋志胜. 棉蚜抗药性及其抗性治理对策的研究[J]. 农药, 2004, 43(7): 294-297.
    [54] 蔡青年, 张青文, 王宇, 等. 小麦体内生化物质在抗蚜中的作用[J]. 昆虫知识, 2003, 40(5): 391-395.
    [55] 芦屹, 王佩玲, 刘冰, 等. 新疆棉花主栽品种的抗蚜性及其机制研究[J]. 棉花学报, 2009, 2l(1): 57-63.
    [56] Mensah C, DiFonzo C, Nelson R L, et al. Resistance to soybean aphid in early maturing soybean germplasm[J]. Crop Sci., 2005, 45(6): 2228-2233.
    [57] 周明牂. 作物抗虫性原理及应用[M]. 北京:北京农业大学出版社, 1992.
    [58] Keep E. Breeding red raspberry for resistance to diseases and pests[J]. Plant Breeding Reviews, 1989, 6: 245-321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700