用户名: 密码: 验证码:
基于通气量调控的灵芝菌丝体胞内多糖发酵工艺优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Aeration Volume Strategy for Enhanced Intracellular Polysaccharide Production by Ganoderma lucidum Mycelium Based on Submerged Culture
  • 作者:吴迪 ; 袁峰 ; 王国瑞 ; 周帅 ; 杨焱 ; 冯娜 ; 唐庆九 ; 刘艳芳 ; 朱增亮 ; 徐国华 ; 唐传红 ; 刘方 ; 张劲松 ; 冯杰
  • 英文作者:WU Di;YUAN Feng;WANG Guorui;ZHOU Shuai;YANG Yan;FENG Na;TANG Qingjiu;LIU Yanfang;ZHU Zengliang;XU Guohu;TANG Chuanhong;LIU Fang;ZHANG Jingsong;FENG Jie;Institute of Edible Fungi,Shanghai Academy of Agricultural Sciences;Key Laboratory of Edible Fungi Resources and Utilization(South),Ministry of Agriculture;National Engineering Research Center of Edible Fungi;Key Laboratory of Agricultural Genetics and Breeding of Shanghai;Jiangsu Shenhua Pharmaceutical Co.Ltd;Medicinal Fungi Biotechnology Research Center of Jiangsu Province;
  • 关键词:灵芝 ; 通气量 ; 发酵 ; 胞内多糖 ; 比生长速率 ; 比合成速率
  • 英文关键词:Ganoderma lucidum;;aeration volume;;fermentation;;intracellular polysaccharide;;specific growth rate;;specific synthesis rate
  • 中文刊名:SYJB
  • 英文刊名:Acta Edulis Fungi
  • 机构:上海市农业科学院食用菌研究所农业部南方食用菌资源利用重点实验室国家食用菌工程技术研究中心上海市农业遗传育种重点开放实验室;江苏神华药业有限公司江苏省药用真菌生物工程技术研究中心;
  • 出版日期:2019-03-15
  • 出版单位:食用菌学报
  • 年:2019
  • 期:v.26
  • 基金:上海市科技兴农重点攻关项目[沪农科创字(2018)第1-1号];; 上海市农业科学院卓越团队建设计划(2017A-06)
  • 语种:中文;
  • 页:SYJB201901007
  • 页数:6
  • CN:01
  • ISSN:31-1683/S
  • 分类号:39-44
摘要
采用5L搅拌式发酵罐进行灵芝(Ganoderma lucidum)液态深层发酵实验,考察通气量对灵芝菌丝体生长和胞内多糖合成的影响。结果表明:在保持其它因素不变的条件下,通气量9 L/min时菌丝体干重最高,达到15.42 g/L;通气量6 L/min时胞内多糖得率最高,为2.10 g/L。根据发酵过程中菌丝体生长的比生长速率、胞内多糖比合成速率,提出四阶段通气量控制策略:0~31.2 h通气量为6 L/min;31.2~43 h通气量为9 L/min;43~55 h通气量为6 L/min;55~96 h通气量为5 L/min。利用上述策略发酵得到的菌丝体干重为17.35 g/L,比9 L/min条件下提高了12.59%,胞内多糖得率为2.83 g/L,比6 L/min条件下提高了35.75%。研究结果可为规模化液态深层发酵生产灵芝胞内多糖提供参考。
        The submerged culture of Ganoderma lucidum was carried out in a 5 L stirred fermentor to evaluate the effects of aeration volume on the growth of mycelium and the synthesis of intracellular polysaccharide were investigated. The results showed that the maximum mycelial dry weight was 15. 42 g/L when the aeration volume was 9 L/min, and the maximum intracellular polysaccharide yield was 2.10 g/L when the aeration volume was 6 L/min. According to the mycelium specific growth rate and the intracellular polysaccharide specific synthesis rate during fermentation, a four-stage ventilation control strategy was proposed: aeration volume was 6 L/min from 0~31.2 h,aeration volume was 9 L/min from 31.2~43 h,aeration volume was 6 L/min from 43 ~55 h,aeration volume was 5 L/min from 55 ~96 h. By the above strategy the mycelium dry weight reached 17. 35 g/L, which was 12. 59% higher than that under the condition of 9 L/min. The intracellular polysaccharide yield reached 2.83 g/L, which was 35.75% higher than that at 6 L/min. The application of the four-stage aeration volume regulation during the submerged culture of G. lucidum polysaccharide proposed in this study can provide a reference for the large-scale fermentation of G. lucidum polysaccharide.
引文
[1] CHEN S, XU J, LIU C, et al. Genome sequence of the model medicinal mushroom Ganoderma lucidum[J].Nature Communications, 2012, 3:913.
    [2] REN A, QIN L, SHI L, et al. Methyl jasmonate induces ganoderic acid biosynthesis in the basidiomycetous fungus Ganoderma lucidum[J]. Bioresource Technology, 2010, 101(17):6785-6790.
    [3] XU YN, XIA XX, ZHONG JJ. Induction of ganoderic acid biosynthesis by Mn~(2+)in static liquid cultivation of Ganoderma lucidum[J]. Biotechnology and Bioengineering, 2014, 111(11):2358-2365.
    [4] LIANG CX, LI YB, XU JW, et al. Enhanced biosynthetic gene expressions and production of ganoderic acids in static liquid culture of Ganoderma lucidum under phenobarbital induction[J]. Applied Microbiology and Biotechnology, 2010, 86:1367-1374.
    [5] FENG J, ZHANG JS, JIA W, et al. An unstructured kinetic model for the improvement of triterpenes production by Ganoderma lucidum G0119 based on nitrogen source effect[J]. Biotechnology and Bioprocess Engineering,2014, 19:727-732.
    [6] SHI L, REN A, MU DS, et al. Current progress in the study on biosynthesis and regulation of ganoderic acids[J]. Applied Microbiology and Biotechnology, 2010, 88:1243-1251.
    [7] ZHONG JJ, XU YN, TAN GY, et al. Signal transduction engineering:a powerful platform technology for enhancing secondary metabolite production[J]. New Biotechnology, 2014, 31:S23-S24.
    [8]孙金旭.溶氧控制条件对深层灵芝发酵生产灵芝酸产量的影响[J].北方园艺,2014, 38(5):130-132.
    [9]冯杰,冯娜,杨焱,等.通气量对灵芝菌丝体液态深层发酵合成灵芝三萜的影响[J].天然产物研究与开发,2015,27(9):1564-1570.
    [10]胡焕荣.灵芝菌丝体深层发酵工业化生产的研究[J].食品科学,2006, 27(2):196-198.
    [11]王成,郑志永,朱莉,等.通气量对气升式反应器培养高山被孢霉生产花生四烯酸的影响[J].生物加工过程,2015, 13(1):68-74.
    [12] REN LJ, JI XJ, HUANG H, et al. Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp.[J]. Biotechnological Products and Process Engineering,2010, 87:1649-1656.
    [13]余素萍,张劲松,杨炎,等.灵芝胞内多糖高产菌株G7深层发酵工艺的研究[J].中国食用菌,2004, 23(6):36-39.
    [14] JI XJ, HE H, JUN D, et al. Enhanced 2,3-butanediol production by Klebsiella oxytoca using a two-stage agitation speed control strategy[J]. Bioresour Technology, 2009, 100:3410-3414.
    [15]张卉.微生物工程[M].北京:中国轻工业出版社,2010:220-222.
    [16]王国瑞,冯杰,冯娜,等.灵芝液体深层发酵高产胞内多糖菌株的筛选及其动力学研究[J].上海农业学报,2016,32(6):10-17.
    [17]崔凤杰,陶文沂,许泓瑜,等.搅拌转速和通气量对灰树花深层发酵培养的影响[J].食品与生物技术学报,2006,25(4):67-80.
    [18] HSIEH CY, TSENG MH, LIU CJ. Production of polysaccharides from Ganoderma lucidum(CCRC 36041)under limitations of nutrients[J]. Enzyme and Microbial Technology, 2006, 38:109-117.
    [19]刘高强,王晓玲,韩文军,等.响应曲面法优化灵芝廉价型深层发酵培养基的研究[J].菌物学报,2009, 28(6):825-831.
    [20]张华山,李亚芳,余响华.灵芝多糖发酵工艺条件的研究[J].氨基酸和生物资源,2005, 27(4):30-31.
    [21]谭灵芝,李怀玉,徐雄飞,等.利用响应面法大幅度提高“BS-1”灵芝菌株的产多糖水平[J].广东化工,2015, 42(23):88-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700