用户名: 密码: 验证码:
不同非感应起电及感应起电参数化方案对青海东部一次雷暴云电荷结构影响的数值模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation of thunderstorm charge structure in eastern Qinghai using different non-inductive and inductive schemes
  • 作者:李江林 ; 余晔 ; 李万莉 ; 李亚珺
  • 英文作者:LI JiangLin;YU Ye;LI WanLi;LI YaJun;Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Northwest Institute of Eco-Environmental Resources,Chinese Academy of Science;Pingliang Land Surface Process & Severe Weather Research Station,Chinese Academy of Sciences;Meteorological Administration Training Center;
  • 关键词:雷暴云 ; 非感应起电 ; 感应起电 ; 电荷结构 ; 数值模拟
  • 英文关键词:Thunderstorm;;Non-inductive charge;;Inductive charge;;Charge structure;;Numerical simulation
  • 中文刊名:DQWX
  • 英文刊名:Chinese Journal of Geophysics
  • 机构:中国科学院西北生态环境资源研究院寒旱区陆面过程与气候变化重点实验室;中国科学院平凉陆面过程与灾害天气观测研究站;中国气象局气象干部培训学院;
  • 出版日期:2019-07-15
  • 出版单位:地球物理学报
  • 年:2019
  • 期:v.62
  • 基金:国家重点基础研究计划(2014CB441404);; 中国科学院“西部之光”人才培养引进计划;; 国家自然科学基金(41575014,41405007,41805003)共同资助
  • 语种:中文;
  • 页:DQWX201907002
  • 页数:16
  • CN:07
  • ISSN:11-2074/P
  • 分类号:18-33
摘要
本研究利用加入起电、放电参数化方案的数值模式(Weather Research and Forecasting Model(Version 3.7.1),WRF3.7.1_ELEC),通过设计五组不同非感应起电及感应起电参数化方案敏感性试验,对发生在青藏高原东北部青海大通地区的一次雷暴过程进行模拟研究,对比分析了不同非感应起电机制及感应起电机制对雷暴云电荷结构的影响.结果表明:在雷暴云发展旺盛阶段,Saunders(S91)、Riming Rate(RR)、和Saunders和Peck(SP98)三种非感应起电方案模拟的雷暴云最低层均为负电荷区,而混合方案(Brooks and SP98,BSP)模拟的雷暴云最低层为正电荷区,主电荷区自下而上为"+-+-"排列的四层电荷结构.与甚高频辐射源定位法推算的结果对比,BSP方案模拟的本次高原雷暴云电荷结构更接近实际情况;几种不同非感应起电方案模拟的主电荷区外围与主电荷区电荷结构不同,说明在雷暴发展的不同阶段雷暴云的电荷结构是不同的;几种非感应起电方案模拟的电荷结构不尽相同,主要是由于霰、冰和雪粒子在不同高度所带电荷的极性及电量的大小不同,霰粒子的电荷密度对低层的影响较大,冰粒子和雪粒子的电荷密度对中上层的影响较大;加入感应起电机制后,雷暴云电荷结构分布几乎没有变化,但能使雷暴云发展旺盛阶段低层和中层的正负电荷区电荷密度有所加强.
        A thunderstorm event that occurred at Datong of Qinghai in the northeastern Tibetan Plateau was simulated using four different non-inductive and one inductive electrification schemes on the WRF3.7.1_ELEC numerical model.The results show that at the mature stage of thethunderstorm,the S91,RR and SP98 non-inductive schemes all simulated a negative charge region at the bottom of the thundercloud,while the BSP non-inductive scheme produced a fourlayered charge structure with a lower positive charge region which was consistent with that deduced from very high frequency(VHF)radiation source data.The four non-inductive electrification schemes produced different charge structures between the main charged area and the periphery charged area indicating the charge structures were different at different stages of the storm development.The differences in charge structures produced by different non-inductive schemes are related to the differences in the charge polarity and amount among graupel,ice and snow particles at different heights.While the charge density of graupel has a greater influence on the low cloud layer,the charge density of ice and snow has a greater influence on the high cloud layer.The including of inductive electrification scheme increased the positive and the negative charge density in the lower and middle areas,respectively in the mature phase of the thunderstorm,but retained its overall charge structure.
引文
Brooks I M,Saunders C P R,Mitzeva R P,et al.1997.The effect on thunderstorm charging of the rate of rime accretion by graupel.Atmospheric Research,43(3):277-295.
    Feng G L.2008.Studies on lightning activity and its relationship with dynamics and precipitation structure of severe convective weather systems[Ph.D.thesis](in Chinese).Beijing:Graduate University of Chinese Academy of Sciences.
    Fierro A,Mansell E R,MacGorman D R,et al.2013.The implementation of an explicit charging and discharge lightning scheme within the WRF-ARW model:Benchmark simulations of a continental squall line,a tropical cyclone,and a winter storm.Monthly Weather Review,141(7):2390-2415.
    Fierro A O,Mansell E R,Ziegler C L,et al.2015.Explicitly simulated electrification and lightning within a tropical cyclone based on the environment of hurricane Isaac(2012).Journal of the Atmospheric Sciences,72(11):4167-4193.
    Gardiner B,Lamb D,Pitter R L,et al.1985.Measurements of initial potential gradient and particle charges in a Montana summer thunderstorm.Journalof Geophysical Research:Atmospheres,90(D4):6079-6086.
    Guo F X,Zhang Y J,Yan M H.2007.A numerical study of the charge structure in thunderstorm in Nagqu area of the QinghaiXizang plateau.Chinese Journal of Atmospheric Sciences(in Chinese),31(1):28-36.
    Helsdon J H Jr,Farley R D.1987.A numerical modeling study of a Montana thunderstorm:2.Model results versus observations involving electrical aspects.Journal of Geophysical Research:Atmospheres,92(D5):5661-5675.
    Jayaratne E R,Saunders C P R,Hallet J.1983.Laboratory studies of the charging of soft-hail during ice crystal interactions.Quarterly Journal of the Royal Meteorological Society,109(461):606-630.
    Keith W D,Saunders C P R.1990.Further laboratory studies of the charging of graupel during ice crystal interactions.Atmospheric Research,25(5):445-464.
    Li Y J,Zhang G S,Wen J,et al.2013.Electrical structure of a Qinghai-Tibet Plateau thunderstorm based on three-dimensional lightning mapping.Atmospheric Research,134:137-149.
    Liu X S,Guo C M,Wang C W,et al.1987.The surface electrostatic field-change produced by lightning flashes and the lower positive charge layer of the thunderstorm.Acta Meteorolgica Sinica(in Chinese),45(4):500-504.
    Mansell E R,MacGorman D R,Ziegler C L,et al.2005.Charge structure and lightning sensitivity in a simulated multicell thunderstorm.Journal of Geophysical Research:Atmospheres,110(D12):D12101,doi:10.1029/2004JD005287.
    Mansell R M,Ziegler C L,Bruning E C.2010.Simulated electrification of a small thunderstorm with two-moment bulk microphysics.Journal of the Atmospheric Sciences,67(1):171-194.
    Mason B J.1971.The Physics of Clouds.Oxford,U.K.:Clarendon.
    Qie X S,Zhang T L,Chen C P,et al.2005.The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau.Geophysical Research Letters,32(5):L05814,doi:10.1029/2004GL022162.
    Rawlins F.1982.A numerical study of thunderstorm electrification using a three-dimensional model incorporating the ice phase.Quarterly Journal of the Royal Meteorological Society,108(458):779-800.
    Saunders C P R,Keith W D,Mitzeva R P.1991.The effect of liquid water on thunderstorm charging.Journal of Geophysical Research:Atmospheres,96(D6):11007-11017.
    Saunders C P R,Peck S L.1998.Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions.Journal of Geophysical Research:Atmospheres,103(D12):13949-13956.
    Sun A P,Yan M H,Zhang Y J,et al.2002a.Numerical study of thunderstorm electrification with a three-dimensional dynamics and electrification coupled model I:model description and parameterization of electrical processes.Acta Meteorologica Sinica(in Chinese),60(6):722-731.
    Sun A P,Yan M H,Zhang Y J,et al.2002b.Numerical study of thunderstorm electrification with a three-dimensional dynamics and electrification coupled model II:mechanism of electrical structure.Acta Meteorologica Sinica(in Chinese),60(6):732-739.
    Sun J,Guo F X.2015.Effect of cloud saturation on non-inductive electrification process in thunderstorm.Transactions of Atmospheric Sciences(in Chinese),38(4):502-509,doi:10.13878/j.cnki.dqkxxb.20110905002.
    Takahashi T.1978.Riming electrification as a charge generation mechanism in thunderstorm.Journal of Atmospheric Sciences,35(8):1536-1548.
    Takahashi T.1984.Thunderstorm electrification-A numerical study.Journal of Atmospheric Sciences,41(17):2541-2558.
    Tan Y B,Tao S C,Zhu B Y.2006.Fine-resolution simulation of the channel structures and propagation features of intracloud lightning.Geophysical Research Letters,33(9):L09809,doi:10.1029/2005GL025523.
    Wang C W,Chen Q,Liu X S,et al.1987.The electric field produced by the lower positive charge center of thundercloud.Plateau Meteorology(in Chinese),6(1):65-74.
    Yan M H,Guo C M,Ge Z M.1996a.Numerical study of cloud dynamic-electrification in an axisymmetric,time-dependent cloud modelⅠ.Theory and model.Acta Geophysica Sinica(in Chinese),39(S1):52-64.
    Yan M H,Guo C M,Ge Z M.1996b.Numerical study of cloud dynamic-electrification in an axisymmetric,time-dependent cloud modelⅡ.Calculation results.Acta Geophysica Sinica(in Chinese),39(S1):65-77.
    Yan M H,Liu X S,An X M,et al.1996c.A simulation study of non-inductive charging mechanism in thunderstormⅠ.Affect of cloud factor.Plateau Meteorology(in Chinese),15(4):425-437.
    Yan M H,Liu X S,An X M,et al.1996d.A simulation study of non-inductive charging mechanism in thunderstormⅡ.Affect of environmental factor.Plateau Meteorology(in Chinese),15(4):438-437.
    Ye Z X,Shao X M,Liu X S.1987.Electric field and charge distribution model of thunderstorms.Plateau Meteorology(in Chinese),6(3):234-243.
    Ziegler C L,MacGorman D R,Dye J E,et al.1991.A model evaluation of noninductive graupel-ice charging in the early electrification of a mountain thunderstorm.Journal of Geophysical Research:Atmospheres,96(D7):12833-12855.
    Ziegler C L,MacGorman D R.1994.Observed lightning morphology relative to modeled space charge and electric field distributions in a tornadic storm.Journal of Atmospheric Sciences,51(6):833-851.
    冯桂力.2008.强对流天气的闪电特征及其与动力过程和降水结构关系的研究[博士论文].北京:中国科学院研究生院.
    郭凤霞,张义军,言穆弘.2007.青藏高原那曲地区雷暴云电荷结构特征数值模拟研究.大气科学,31(1):28-36.
    刘欣生,郭昌明,王才伟等.1987.闪电引起的地面电场变化特征及雷暴云下部的正电荷层.气象学报,45(4):500-504.
    孙安平,言穆弘,张义军等.2002a.三维强风暴动力-电耦合数值模拟研究Ⅰ:模式及其电过程参数化方案.气象学报,60(6):722-731.
    孙安平,言穆弘,张义军等.2002b.三维强风暴动力-电耦合数值模拟研究Ⅱ:电结构形成机制.气象学报,60(6):732-739.
    孙京,郭凤霞.2015.云水饱和度对雷暴云非感应起电过程的影响.大气科学学报,38(4):502-509,doi:10.13878/j.cnki.dqkxxb.20110905002.
    王才伟,陈茜,刘欣生等.1987.雷雨云下部正电荷中心产生的电场.高原气象,6(1):65-74.
    言穆弘,郭昌明,葛正谟.1996a.积云动力和电过程二维模式研究Ⅰ.理论和模式.地球物理学报,39(S1):52-64.
    言穆弘,郭昌明,葛正谟.1996b.积云动力和电过程二维模式研究Ⅱ.计算结果.地球物理学报,39(S1):65-77.
    言穆弘,刘欣生,安学敏等.1996c.雷暴非感应起电机制的模拟研究Ⅰ.云内因子影响.高原气象,15(4):425-437.
    言穆弘,刘欣生,安学敏等.1996d.雷暴非感应起电机制的模拟研究Ⅱ.环境因子影响.高原气象,15(4):438-447.
    叶宗秀,邵选民,刘欣生.1987.雷暴云的电场及电荷分布模式.高原气象,6(3):234-243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700