用户名: 密码: 验证码:
基于响应曲面法的旋风分离器结构优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Structure optimization of cyclone based on response surface method
  • 作者:熊攀 ; 鄢曙光 ; 刘玮寅
  • 英文作者:XIONG Pan;YAN Shuguang;LIU Weiyin;College of Resource and Environmental Engineering, Wuhan University of Science and Technology;Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources;
  • 关键词:旋风分离器 ; 响应曲面 ; CFD数值模拟 ; 结构优化 ; 颗粒
  • 英文关键词:cyclone;;response surface;;CFD numerical simulation;;structural optimization;;particles
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:武汉科技大学资源与环境工程学院;冶金矿产资源高效利用与造块湖北省重点实验室;
  • 出版日期:2018-10-25 15:12
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 语种:中文;
  • 页:HGSZ201901018
  • 页数:7
  • CN:01
  • ISSN:11-1946/TQ
  • 分类号:164-170
摘要
为了优化旋风分离器的分离效率和能量损耗,确定影响旋风分离器性能的主要结构参数,采用响应曲面模型和CFD数值模拟,以排尘口直径(Dd)、排气口直径(De)、入口速度(V)为设计变量,以压降和总分离效率为目标函数,进行三因素的优化设计分析。研究结果表明,排尘口直径对压降和分离效率影响不大,排气口直径与速度对压降和分离效率影响显著,且排气口直径与速度的交互作用明显。针对本次0.5~10μm的颗粒群,推荐最优参数组合是De/D=0.35、Dd/D=0.37、V=12 m/s。与实验的结构相比,在相近的分离效率情况下,压降降低了一半,有效地减少了能耗。表明所建立的响应曲面模型能够较精确地表示设计变量与目标函数之间的关系,基于响应曲面模型的优化设计方法可以有效用于旋风分离器的结构优化。同时不同的粒径要求可以采用不同的结构进行除尘,在达到分离要求的前提下,采用最小压降的结构,本次研究为分离0.5~10μm粒径的结构提供有利的依据。
        To optimize the separation efficiency and energy loss of the cyclone separator, the main structural parameters affecting the performance of the cyclone separator are determined. The response surface model and CFD numerical simulation are used to select the dust outlet diameter(Dd), exhaust port diameter(De), and inlet velocity(V), and the pressure drop and the total separation efficiency are used as the objective functions, and the three-factor optimization design analysis is performed. The results show that the diameter of the exhaust port has littleeffect on the pressure drop and the separation efficiency. The diameter and velocity of the exhaust port havesignificant effects on the pressure drop and the separation efficiency, and the interaction between the diameter ofthe exhaust port and the velocity is obvious. For the current 0.5—10 μm particle group, the optimal parameters areDe/D=0.35, Dd/D=0.37, V=12 m/s. Compared with the experimental structure, in the case of similar separationefficiency, the pressure drop is reduced by half, effectively reducing the energy consumption. The establishedresponse surface model can accurately represent the relationship between design variables and objective functions.Optimization design method based on response surface model can be effectively applied to structural optimization of cyclone separator. And different particle size requirements can use different structures for dust removal. To achieve the separation requirements of the premise, the structure of the minimum pressure drop is used. This study providesa favorable basis for the separation of 0.5—10 μm particle size structure.
引文
[1] Li J W, Cai W J, Dong B Y, et al. Experimental study on the performances of cyclone impulse electrostatic precipitator[J]. Acta Scientiae Circumstantiae, 2002, 22(2):252-255.
    [2] Gao X, Chen J, Feng J, et al. Numerical investigation of the effects of the central channel on the flow field in an oil–gas cyclone separator[J]. Computers&Fluids, 2014, 92(9):45-55.
    [3] Chuah T G, Gimbun J, Choong T S Y. A CFD study of the effect of cone dimensions on sampling aerocyclones performance and hydrodynamics[J]. Powder Technology, 2006, 162(2):126-132.
    [4]王乐勤,郝宗睿,王循明,等.简体长度对旋风分离器内流场影响的数值模拟[J].工程热物理学报, 2009, 30(2):223-226.Wang L Q, Hao Z R, Wang X M, et al. Numerical simulation of flow field in cyclone of different height[J]. Journal of Engineering Thermophysics, 2009, 30(2):223-226.
    [5]袁惠新,姚宇婷,付双成,等.锥段长度对微型旋流分离器内流场影响的数值模拟[J].化工机械, 2011, 38(3):341-344.Yuan H X, Yao Y T, Fu S C, et al. Numerical simulation of cone height influence on flow field in mini cyclone separator[J].Chemical Machinery, 2011, 38(3):341-344.
    [6]魏名山,马朝臣.用PIV进行静电旋风除尘器流场的测定[J].北京理工大学学报, 2000, 20(4):496-499.Wei M S, Ma C C. Measurement of the velocity field of ESCP with PIV[J]. Transaction of Beijing Institute of Technology, 2000, 20(4):496-499.
    [7]李强.旋风除尘器优化设计及分离特性研究[D].长沙:中南大学, 2008.Li Q.Optimization design and separation characteristics of cyclone dust collector[D]. Changsha:Central South University, 2008.
    [8]高助威,王江云,王娟,等.蜗壳式旋风分离器内部流场空间的涡分析[J].化工学报, 2017, 68(8):3006-3013.Gao Z W, Wang J Y, Wang J, et al. Vortex analysis in flow field of cyclone separator with single volute inlet[J]. CIESC Journal, 2017,68(8):3006-3013.
    [9]吴小林,熊至宜,姬忠礼,等.旋风分离器旋进涡核的数值模拟[J].化工学报, 2007, 58(2):383-390.Wu X L, Xiong Z Y, Ji Z L, et al. Numerical simulation of precessing vortex core in cyclone separator[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(2):383-390.
    [10] Karagoz I, Kaya F. CFD investigation of the flow and heat transfer characteristics in a tangential inlet cyclone[J]. International Communications in Heat&Mass Transfer, 2007, 34(9/10):1119-1126.
    [11]赵新学,金有海.排尘口直径对旋风分离器壁面磨损影响的数值模拟[J].机械工程学报, 2012, 48(6):142-148.Zhao X X, Jin Y H. Effect of dust discharge diameter on wall erosion in cyclone separator[J]. Journal of Mechanical Engineering, 2012, 48(6):142-148.
    [12]高翠芝,孙国刚,董瑞倩.排气管对旋风分离器轴向速度分布形态影响的数值模拟[J].化工学报, 2010, 61(9):2409-2416.Gao C Z, Sun G G, Dong R Q. Effect of vortex finder on axial velocity distribution patterns in cyclones[J].CIESC Journal, 2010,61(9):2409-2416.
    [13]付烜,孙国刚,刘佳,等.旋风分离器进口涡旋感生速度场的减阻增效作用[J].化工学报, 2011, 62(7):1927-1932.Fu X, Sun G G, Liu J, et al. Effect of induced velocity on separation efficiency and pressure drop of cyclones caused by vortex in vortex-tube inlet pipe[J]. CIESC Journal, 2011, 62(7):1927-1932.
    [14] Gong G, Yang Z, Zhu S. Numerical investigation of the effect of helix angle and leaf margin on the flow pattern and the performance of the axial flow cyclone separator[J]. Applied Mathematical Modelling, 2012, 36(8):3916-3930.
    [15] Gronald G, Derksen J J. Simulating turbulent swirling flow in a gas cyclone:a comparison of various modeling approaches[J].Powder Technology, 2011, 205(1/2/3):160-171.
    [16] Winfield D, Cross M, Croft N, et al. Performance comparison of a single and triple tangential inlet gas separation cyclone:a CFD study[J]. Powder Technology, 2013, 235(2):520-531.
    [17]王永菲,王成国.响应面法的理论与应用[J].中央民族大学学报(自然科学版), 2005, 14(3):236-240.Wang Y F, Wang C G. The application of response surface methodology[J]. Journal of the CUN(Natural Sciences Edition),2005, 14(3):236-240.
    [18] Jiang M, Wang B. Numerical analysis of applied forces information exerted on particles in cyclone separators[J]. Powder Technology, 2016, 294(1):437-448.
    [19]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.Wang F J. Computational Fluid Dynamics[M]. Beijing:Tsinghua University Press, 2004.
    [20] González-Tello P, Camacho F, Vicaria J M, et al. A modified Nukiyama-Tanasawa distribution function and a Rosin-Rammler model for the particle-size-distribution analysis[J]. Powder Technology, 2008, 186(3):278-281.
    [21] Song C, Pei B, Jiang M, et al. Numerical analysis of forces exerted on particles in cyclone separators[J]. Powder Technology, 2016,294(1):437-448.
    [22] Hoffmann A C, Stein L E. Gas Cyclones and Swirl Tubes[M].Springer Berlin Heidelberg, 2002.
    [23]王晶.基于响应曲面法的多响应稳健性参数优化方法研究[D].天津:天津大学, 2009.Wang J. Robust parameter optimization for multi-response using response surface methodology[D]. Tianjin:Tianjin University,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700