用户名: 密码: 验证码:
缺陷铁纳米环体系的磁特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Magnetic dynamic properties of defective iron nanorings
  • 作者:叶晴莹 ; 王文静 ; 邓楚楚 ; 陈水源 ; 张鑫源 ; 王雅婧 ; 黄秋怡 ; 黄志高
  • 英文作者:Ye Qing-Ying;Wang Wen-Jing;Deng Chu-Chu;Chen Shui-Yuan;Zhang Xin-Yuan;Wang Ya-Jing;Huang Qiu-Yi;Huang Zhi-Gao;College of Physics and Energy,Fujian Normal University,Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials;Fujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices;
  • 关键词:Monte ; Carlo方法 ; 快速傅里叶变换微磁学方法 ; 缺陷铁纳米环 ; 磁特性
  • 英文关键词:Monte Carlo simulation;;fast Fourier transformation micromagnetism method;;defective Fe nanoring;;magnetic properties
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:福建师范大学物理与能源学院福建省量子调控与新能源材料重点实验室;福建省半导体光电材料及其高效转换器件协同创新中心;
  • 出版日期:2019-05-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:61574037);; 福建省自然科学基金(批准号:2017J01553,2016J01007)资助的课题~~
  • 语种:中文;
  • 页:WLXB201910030
  • 页数:7
  • CN:10
  • ISSN:11-1958/O4
  • 分类号:265-271
摘要
采用Monte Carlo方法与快速傅里叶变换微磁学方法相结合的方式,模拟含不同缺陷的铁纳米环的磁滞回线、组态、剩磁等磁特性.研究发现:缺陷的大小与位置明显影响系统的磁化过程.当缺陷较小时,系统存在双稳态特征,此性质与无缺陷系统类似;当缺陷增大时,系统过渡状态增加,双稳态特征不再明显.进一步的研究发现,缺陷系统的剩磁随缺陷半径D的增大而增大.上述结果与非对称纳米环系统的磁特性类似,并可以通过零场状态下的系统自旋组态的变化加以解释.当系统圆心与缺陷中心的间距Y增加时,剩磁与Y的关系是非线性的:剩磁先随Y的增大而增大,后随Y的增大而减小.模拟结果可用零场状态下不同Y值的组态变化进行详细解释.上述研究结果表明,缺陷可以明显影响铁纳米环的磁特性.
        Magnetic nanorings can be high-density integrated because their stray field is low in vortex states. In this paper, the magnetic dynamic properties of the defective Fe nanorings are studied. For convenience, we assume the defect to be round in shape, whose coordinate is(0, Y). Based on the Monte Carlo method and fast Fourier transformation micromagnetism method, the magnetic properties of the defective Fe nanorings, such as hysteresis loops, spin configurations, remanence, etc., are studied. The simulation results indicate that the magnetization process of the system can be affected by the sizes and locations of the defects. When the defects are small, the system has a bistable state, which is similar to the system without defects. The transition state of the system increases as the defects are enlarged, and the bistable state will be no longer so visible. The system becomes open when the defects are big enough. Meanwhile, its hysteresis loop presents a rectangular shape which is similar to cluster's or quantum dot's. The remanence increases with the radius of defect increasing.These results are in accord with the magnetic properties of asymmetric magnetic nanoring. In order to explain the above results, the spin configurations of the system are shown. The spins of defective nanorings are divided into two parts, i.e., upper half part and lower half part, which are represented as blue and black spins respectively. When the system does not have any defects, the number of blue spins is equal to black spins'.Therefore the remanence is zero when the system is in a vortex state. It is found that the number of blue spins decreases as the radius of defect increases. This situation results in the total magnetic moment increasing, which leads the remanence to increase. However, the relationship between remanence and Y(the distance between center of nanoring and center of defect) is nonlinear. The remanence first increases and then decreases with Y increasing. The simulation results can be explained by changing the spin configuration. By analyzing the spins of the upper and lower part, the magnetic moment of the system is analyzed. It is found that the number of the spins and the local vortexes can affect the remanence significantly. The results show that the magnetic properties of Fe nanorings can be affected by the defect.
引文
[1]Wang Y G,Zhou K J,Huang G,Hensley C,Huang X N,Ma X P,Zhao T,Baran D S,Ralph J D,Gao J M 2014 Nat.Mater.13 204
    [2]Li H,Cao Z M,Lin J Y,Zhao H,Jiang Q R,Jiang Z Y,Liao H G,Qin K,Xie Z X 2018 Nanoscale 10 1930
    [3]Kim D,Lee D R,Choi Y,Metlushko V 2012 Appl.Phys.Lett.101 192404
    [4]Wang Z,Zhang G F,Li B,Chen R Y,Qin C B,Xiao L T,Jia S T 2015 Acta Phys.Sin.64 247803(in Chinese)[王早,张国峰,李斌,陈瑞云,秦成兵,肖连团,贾锁堂2015物理学报64 247803]
    [5]Fatemi M,Mollania N,Momeni-Moghaddam M,Sadeghifar F2018 J.Biotechnol.270 1
    [6]Li J C,Shao S J 2017 Acta Phys.Sin.66 017101(in Chinese)[李建昌,邵思佳2017物理学报66 017101]
    [7]He X M,Zhong W,Du Y W 2018 Acta Phys.Sin.67 227501(in Chinese)[何学敏,钟伟,都有为2018物理学报67 227501]
    [8]Lin Z Q 2009 M.S.Thesis(Fzhou:Fujian Normal University)(in Chinese)[林枝钦2009硕士学位论文(福州:福建师范大学)]
    [9]Yoon S,Lee S H,Kwak,Nam C,Kim W B,Cho B K 2014 J.Appl.Phys.115 17B511
    [10]Liang Y Z,Li L M,Lu M D,Yuan H Z 2018 Nanoscale 10548
    [11]Parkinson P,Kamonsutthipaijit N,Anderson H L,Herz L M2016 ACS Nano 10 5933
    [12]Yannouleas C,Romanovsky I,Landman U 2015 J.Phys.Chem.C 119 11131
    [13]Zhang Z Y,Sun Z H,Wang Y H,Zhang Z D 2011 Acta Phys.Sin.60 047808(in Chinese)[张中月,孙中华,王红艳,张志东2011物理学报60 047808]
    [14]Wang T B,Liu N H,Yu T B,Xu X M,Liao Q H 2014 Acta Phys.Sin.63 017301(in Chinese)[王同标,刘念华,于天宝,徐旭明,廖清华2014物理学报63 017301]
    [15]LüJ T,Wang F W,Ma Z H,Si G Y 2013 Acta Phys.Sin.62057804(in Chinese)[吕江涛,王凤文,马振鹤,司光远2013物理学报62 057804]
    [16]Chen X,Qin J,Han X F,Liu Y 2018 Appl.Phys.Lett.113142406
    [17]Liu H,Wei H,Han X F,Yu G,Zhan W,Gall S,Lu Y,Hehn M,Mangin S,Sun M,Liu Y H,Cheng H 2018 Phys.Rev.Appl.10 054013
    [18]Singh N,Goolaup S,Tan W,Adeyeye A O,Balasubramaniam N 2007 Phys.Rev.B 75 104407
    [19]Palma J L,Morales-Concha C,Leighton B,Escrig D J,Altbir J 2012 J.Magn.Magn.Mater.324 637
    [20]Avila J I,Tumelero M A,Pasa A A,Viegas A D C 2015 J.Appl.Phys.117 103901
    [21]Zhu F Q,Chern G W,Tchernyshyov O,Zhu X C,Zhu J G,Chien C L 2006 Phys.Rev.Lett.96 027205
    [22]Zhong K H,Feng Q,Weng Z Z,Huang Z G 2005 Chin.J.Comput.Phys.22 534(in Chinese)[钟克华,冯倩,翁臻臻,黄志高2005计算物理22 534]
    [23]Huang Z G,Chen Z G,Peng K,Wang D H,Zhang W Y,Zhang F M,Du Y W 2004 Phys.Rev.B 69 094420
    [24]Huang Z,Chen Z,Zhang F,Du Y 2004 Eur.Phys.J.B 37177
    [25]Huang Z,Chen Z,Li S,Feng Q,Zhang F,Du Y 2006 Eur.Phys.J.B 51 65
    [26]Ye Q,Feng Q,Chen S,Zhang J,Huang Z 2009 J.Nanosci.Nanotechnol.9 1635

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700