用户名: 密码: 验证码:
可实现偏振无关单向传输的二维硅基环形孔光子晶体
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Two-dimensional silicon annular photonic crystals for realizing polarization-independent unidirectional transmission
  • 作者:刘丹 ; 胡森
  • 英文作者:Liu Dan;Hu Sen;Department of Physics and Mechanical and Electrical Engineering,Hubei University of Education;College of Physical Science and Technology,Central China Normal University;
  • 关键词:环形孔光子晶体 ; 单向传输 ; 偏振无关
  • 英文关键词:annular photonic crystal;;unidirectional transmission;;polarization-independent
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:湖北第二师范学院物理与机电工程学院;华中师范大学物理科学与技术学院;
  • 出版日期:2019-01-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:11504100)资助的课题~~
  • 语种:中文;
  • 页:WLXB201902015
  • 页数:7
  • CN:02
  • ISSN:11-1958/O4
  • 分类号:131-137
摘要
基于光子晶体来构筑偏振无关光二极管在光电集成领域具有重大的应用价值.首先提出了一种环形孔光子晶体,能带结构显示其对横电及横磁模式同时展现出显著的方向带隙.以此构建了三角形状的环形孔光子晶体,利用时域有限差分法计算其透过谱及场分布图,发现该结构能实现偏振无关单向传输特性,然而正向透过率太低(约20%).进一步引入尺寸较小的三角形状的环形孔光子晶体构成光子晶体异质结结构,有效地提高了偏振无关单向传输性能,正向透过率增大了一倍.通过界面结构的调整,正向透过率进一步增大,优化后的环形孔光子晶体异质结结构能同时对类横电及类横磁模式入射光实现单向传输,且正向透过率达到了44%.
        Optical diode is a device that can realize unidirectional transmission of light. Its function is similar to that of an electronic diode. It has important applications in the field of optoelectronic integration and all-optical communications. Unidirectional wave transmission requires either time-reversal or spatial inversion symmetry breaking. The magneto-optical effect and optical nonlinearity are usually utilized to break the time-reversal symmetry and obtain the unidirectional transmission. However, these schemes all need high light intensity or magnetic field strength to be realized, and limit the usage. Therefore, spatial inversion symmetry breaking is highly desirable because of totally linear materials under low intensities. Quit a lot of researchers have designed optical diodes based on the photonic crystals and achieved unidirectional transmission for TE-like or TM-like light. The early design realized light unidirectional transmission by PC structures for only one polarization state(TE-like or TM-like incident light). It limits the application for the high integration and reconfigurable optical interconnection. The structure which can achieve unidirectional transmission for both TE and TM polarizations needs to be designed. The annular PCs have been verified to realize polarization-independent phenomena, such as beam splitting, self collimation and waveguide. In this paper, an annular PC is proposed. The plane wave expansion method is used to calculate band structures. The results show that it exhibits a significant directional band gap for both TE and TM mode. Then, the triangular annular PC is constructed, and its transmission spectra and field distributions are calculated by the finite-different time-domain method. It is found that the structure can realize the polarization-independent unidirectional transmission, but the forward transmissivity is too low(about 20%). Moreover, another smaller size annular PC is further introduced to form annular PC heterojunction, which effectively improves the polarization-independent unidirectional transmission performance and the forward transmissivity has doubled. Through the adjustment of the interface structure, the forward transmissivity is further increased. The optimized annular PC heterostructure can realize polarizationindependent unidirectional transmission, and the forward transmissivity reaches 44%. The heterostructure can be used to fabricate polarization-independent optical diode, and may have potential applications in complex alloptical integrated circuits.
引文
[1] John S 1987 Phys. Rev. Lett. 58 2486
    [2] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
    [3] Ho K M, Chan C T, Soukoulis C M 1990 Phys. Rev. Lett. 653152
    [4] Wierer J J, Krames M R, Epler J E 2004 Appl. Phys. Lett. 843885
    [5] Kim D H, Cho C O, Roh Y G 2005 Appl. Phys. Lett. 87203508
    [6] Wang C X, Xu X S, Li F, Du W, Xiong G G, Liu Y L, ChenH D 2006 Chin. Phys. Lett. 23 2472
    [7] Zhu X G, Yu T B, Chen S W, Shi Z, Hu S J, Lai Z Q, Liao Q H, Huang Y Z 2009 Acta Phys. Sin. 58 1014(in Chinese)[朱桂新,于天宝,陈淑文,石哲,胡淑娟,赖珍荃,廖清华,黄永箴2009物理学报58 1014]
    [8] Yang Q Q, Hou L T 2009 Acta Phys. Sin. 58 8345(in Chinese)[杨倩倩,侯蓝田2009物理学报58 8345]
    [9] Chen Y, Wang W Y, Yu N 2014 Acta Phys. Sin. 63 034205(in Chinese)[陈颖,王文跃,于娜2014物理学报63 034205]
    [10] Zhuang Y Y, Zhou W, Ji K, Chen H M 2015 Acta Phys. Sin.64 224202(in Chinese)[庄煜阳,周雯,季珂,陈鹤鸣2015物理学报64 224202]
    [11] Zhang X Z, Feng M, Zhang X Z 2013 Acta Phys. Sin. 62024201(in Chinese)[张学智,冯鸣,张心正2013物理学报62024201]
    [12] Zaman T R, Guo X, Ram R 2007 J. Appl. Phys. Lett. 90023514
    [13] Bi L, Hu J, Jiang P, et al. 2011 Nat. Photonics 5 758
    [14] Fan L, Wang J, Varghese L T 2012 Science 335 447
    [15] Kurt H, Yilmaz D, Akosman A E, et al. 2012 Opt. Express 2020635
    [16] Zhang Y Y, Kan Q, Wang G P 2014 Opt. Lett. 39 4934
    [17] Lu C C, Hu X Y, Zhang Y B, et al. 2011 Appl. Phys. Lett. 99051107
    [18] Wang C, Zhou C Z, Li Z Y 2011 Opt. Express 19 26948
    [19] Feng S, Wang Y Q 2013 Opt. Express 21 220
    [20] Feng S, Wang Y Q 2013 Opt. Mater. 36 546
    [21] Cheng L F, Ren C, Wang P, Feng S 2014 Acta Phys. Sin. 63154213(in Chinese)[程立锋,任承,王萍,冯帅2014物理学报63 154213]
    [22] Liu D, Hu S, Xiao M 2017 Acta Phys. Sin. 66 054209(in Chinese)[刘丹,胡森,肖明2017物理学报66 054209]
    [23] Yucel M B,Cicek A, Ulug B 2013 Photonics and Nanostructures-Fundamentals and Applications 11 270
    [24] Cicek A, Ulug B 2009 Opt. Express 17 18381
    [25] Hou J, Gao D S, Wu H 2009 Opt. Commun. 282 3172
    [26] Wu H, Citrin D S, Jiang L Y, et al. 2013 Appl. Phys. Lett102 141112
    [27] Jiang L Y, Wu H, Li X Y 2013 J. Opt. Soc. Am. B 30 1248
    [28] Feng J, Chen Y, Blair J, et al. 2009 J. Vac. Sci. Technol. B27 568

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700