用户名: 密码: 验证码:
基于Miseq测序技术分析高脂膳食对不同性别SD大鼠盲肠菌群的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of High-fat Diet on Cecal Intestinal Microbiota of Different Genders of Sprague-Dawley Rats Revealed by Miseq Sequencing
  • 作者:夏雪娟 ; 李冠楠 ; 廖丽 ; 曾岚清 ; 郑炯 ; 阚建全
  • 英文作者:Xia Xuejuan;Li Guannan;Liao Liting;Zeng Lanqing;Zheng Jiong;Kan Jianquan;College of Food Science,Southwest University;College of Biotechnology,Southwest University;Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing),Ministry of Agriculture;
  • 关键词:高脂膳食 ; 不同性别 ; 盲肠 ; 微生物 ; 高通量测序
  • 英文关键词:high-fat diet;;different genders;;cecum;;microbiota;;high-throughput sequencing
  • 中文刊名:ZGSP
  • 英文刊名:Journal of Chinese Institute of Food Science and Technology
  • 机构:西南大学食品科学学院;西南大学生物技术学院;农业部农产品贮藏保鲜质量安全风险评估实验室(重庆);
  • 出版日期:2019-01-11 09:55
  • 出版单位:中国食品学报
  • 年:2019
  • 期:v.19
  • 基金:重庆市科技支撑示范工程项目(CSTC2014JCSFJCSSX004)
  • 语种:中文;
  • 页:ZGSP201901029
  • 页数:10
  • CN:01
  • ISSN:11-4528/TS
  • 分类号:229-238
摘要
为研究高脂膳食对不同性别大鼠盲肠菌群的影响,采用Illumina Miseq测序技术分析普通膳食和高脂膳食Sprague-Dawlay大鼠盲肠菌群的变化。结果表明,高脂膳食后雌、雄大鼠肾周脂肪质量和脂肪系数显著性增加(P<0.05)。在门分类水平上,厚壁菌门和拟杆菌门在所有样本中总相对丰度>82%,且雌性大鼠盲肠中厚壁菌门相对丰度高于雄性大鼠。高脂膳食后雌、雄大鼠厚壁菌门相对丰度均降低,拟杆菌门均升高。在属分类水平上,高脂膳食后雌、雄大鼠盲肠中普氏菌属、未分类瘤胃菌科、Blautia、拟杆菌属和未分类紫单胞菌科的相对丰度均降低,分类位置未定的属和Alloprevotella的相对丰度均升高。雌性大鼠盲肠中未分类普氏菌科、考拉杆菌属和未分类毛螺菌科的相对丰度降低,而雄性大鼠盲肠中上述3属菌相对丰度升高。高脂膳食对雌、雄大鼠肠道菌群的影响存在一定差异,研究结果对于探讨不同性别大鼠盲肠菌群参与脂质代谢的机理研究具有一定参考价值。
        To investigate the effects of high-fat diet(HFD) on the cecal microbial community of different gender rats, Illumina Miseq sequencing approach was used to analysis the changes of cecal microbial community of HFD and normal control(NC) diet Sprague-Dawlay rats. After HFD, the perirenal fat and its coefficients of both male and female rats were significantly increased(P<0.05). Bacteroidetes and Firmicutes were the two most dominant phyla, accounting for>82% of the reads in all samples. Furthermore, the relative abundances of Firmicutes of female rats were higher than male rats. After HFD, the relative abundances of Firmicutes in both male and female rats were decreased, while those of Bacteroidetes were increased. Subsequently, at the genus level in both male and female rats, the relative abundances of Prevotella, unclassified Ruminococcaceae, Blautia, Bacteroides and unclassified Porphyromonadaceae were decreased,while those of incertae sedis and Alloprevotella were increased. Additionally, the relative abundances of unclassified Prevotellaceae, Phascolarctobacterium and unclassified Lachnospiraceae were decreased in HFD female rats, however, increased in HFD male rats. Thus, there were some differences between the effects of high-fat-diet on cecal intestinal microbiota of different gender rats. The results from this study may provide a basis for mechanism study of cecal intestinal microbiota participate in lipid metabolism of different gender rats.
引文
[1] NORRIS G H, JIANG C, RYAN J, et al. Milk sphingomyelin improves lipid metabolism and alters gut microbiota in high fat diet-fed mice[J]. The Journal of Nutritional Biochemistry, 2016, 30:93-101.
    [2] WANG H S, TANG X, CHESEREK M J, et al.Obesity prevention of synthetic polysaccharides in high-fat diet fed C57BL/6 mice[J]. Journal of Functional Foods, 2015, 17:563-574.
    [3] MURPHY E F, COTTER P D, HEALY S, et al.Composition and energy harvesting capacity of the gut microbiota:relationship to diet, obesity and time in mouse models[J]. Gut, 2010, 59(12):1635-1642.
    [4]朱超霞,陆颖理.肠道菌群与肥胖及相关代谢性疾病关系的研究进展[J].上海交通大学学报(医学版),2014, 34(12):1829-1833.
    [5] MACFARLANE G T, SANDRA M. Bacteria, colonic fermentation, and gastrointestinal health[J]. Journal of AOAC International, 2012, 95(1):50-60.
    [6] SCHWIERTZ A, TARAS D, SCH魧FER K, et al.Microbiota and SCFA in lean and overweight healthy subjects[J]. Obesity, 2010, 18(1):190-195.
    [7] MCINTOSH G H, LEU R K L, ROYLE P J, et al. A comparative study of the influence of differing barley brans on DMH-induced intestinal tumours in male Sprague-Dawley rats[J]. Journal of Gastroenterology and Hepatology, 1996, 11(2):113-119.
    [8] XIONG L, HIROSHI O, TARO K, et al. The effect of high-amylose cornstarch on lipid metabolism in OVX rats is affected by fructose feeding[J]. Jour nal of Nutritional Biochemistry, 2010, 21(2):89-97.
    [9] COLLINS B, HOFFMAN J, MARTINEZ K, et al.A polyphenol-rich fraction obtained from table grapes decreases adiposity, insulin resistance and markers of inflammation and impacts gut microbiota in high-fat-fed mice[J]. The Journal of Nutritional Biochemistry, 2016, 31:150-165.
    [10] SHEN R L, DANG X Y, DONG J L, et al. Effects of oatβ-Glucan and Barleyβ-Glucan on fecal characteristics, intestinal microflora, and intestinal bacterial metabolites in rats[J]. Journal of Agricultural and Food Chemistry, 2012, 60(45):11301-11308.
    [11] DANIEL H, GHOLAMI A M, BERRY D, et al.High-fat diet alters gut microbiota physiology in mice[J]. The ISME Journal, 2014, 8(2):295-308.
    [12]叶敏,张磊,王倩倩,等.辣椒总碱与花椒麻味素不同质量比对高脂模型大鼠肠道健康的影响[J].食品科学, 2014, 35(21):190-195.
    [13]陈杏云,曾本华,魏泓,等.高脂饮食对菌群人源化小鼠肠道菌群结构的影响[J].食品科学, 2013,34(17):278-283.
    [14] ZHANG L, FANG G S, ZHENG L H, et al.Hypocholesterolemic effect of capsaicinoids in rats fed diets with or without cholesterol[J]. Journal of Agricultural and Food Chemistry, 2013, 61(18):4287-4293.
    [15]王芳,房建伟,王泽宇,等.高脂血症大鼠肠道菌群变化的实验研究[J].黑龙江医药科学, 2005, 28(4):52-53.
    [16] LI Q, LI X, CHEN C, et al. Analysis of bacterial diversity and communities associated with Tricholoma matsutake fruiting bodies by barcoded pyrosequencing in Sichuan Province, Southwest China[J]. Journal of Microbiology and Biotechnology, 2016, 26(1):89-98.
    [17]廖振林,曾本华,李瑞,等.基于PCR-DGGE分析抗性淀粉对高脂饮食HFA小鼠肠道菌群的影响[J].现代食品科技, 2015, 31(9):1-6.
    [18] OHIGASHI, S, SUDO K, KOBAYASHI D, et al.Changes of the intestinal microbiota, short chain fatty acids, and fecal pH in patients with colorectal cancer[J]. Digestive Diseases and Sciences, 2013,58(6):1717-1726.
    [19]刘雪姬,陈庆森,闫亚丽.高脂饮食对小鼠肠道菌群的影响[J].食品科学, 2011, 32(23):306-311.
    [20]姚琪琪.高脂饲料及药物干预对大鼠肠道微生物的影响[D].太原:山西大学, 2014.
    [21]曹宏芳,张家超,王芳,等.高脂饮食对雄性SD大鼠肠道菌群的影响[J].中国微生态学杂志, 2012,24(2):102-108.
    [22]夏雪娟,李冠楠,叶秀娟,等.麻竹笋腌制过程中细菌群落动态变化分析[J].中国食品学报, 2015,15(11):206-211.
    [23]呼庆,齐鸿雁,张洪勋.荧光原位杂交技术及其在微生物生态学中的应用[J].生态学报, 2004, 24(5):1048-1054.
    [24] SUN J, ZHANG Q, ZHOU J, et al. Illumina amplicon sequencing of 16S rRNA tag reveals bacterial community development in the rhizosphere of apple nurseries at a replant disease site and a new planting site[J]. PLoS One, 2014, 9(10):e111744.
    [25] STEFAN, R, JOHAN D, VALENTINA T, et al.454 Pyrosequencing analysis on faecal samples from a randomized DBPC trial of colicky infants treated with Lactobacillus reuteri DSM 17938[J]. PLoS One,2013, 8(2):e56710.
    [26] CHENG W X, CHEN H, YAN S H, et al. Illumina sequencing-based analyses of bacterial communities during short-chain fatty-acid production from food waste and sewage sludge fermentation at different p H values[J]. World Journal of Microbiology and Biotechnology, 2014, 30(9):2387-2395.
    [27] ZHANG J X, YANG Y Y, ZHAO L, et al. Distribution of sediment bacterial and archaeal communities in plateau freshwater lakes[J]. Applied Microbiology and Biotechnology, 2015, 99(7):3291-3302.
    [28]王欢,李宛真,汪弋力,等.高脂饮食诱导的肥胖及肥胖抵抗小鼠肠道菌群元基因组的比较研究[J].西安交通大学学报(医学版), 2014, 35(2):240-244.
    [29] WANG J J, TANG H, ZHANG C H, et al. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat dietfed mice[J]. The ISME Journal, 2015, 9(1):1-15.
    [30] ZHANG, X, ZHAO Y, XU J, et al. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats[J]. Scientific Reports, 2015, 5:14405.
    [31]陈庆金,黄丽,滕建文,等.基于Miseq测序分析六堡茶陈化初期真菌多样性[J].食品科技, 2015,40(8):67-71.
    [32] HU H W, ZHANG L M, DAI Y, et al. pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by highthroughput pyrosequencing[J]. Journal of Soils and Sediments, 2013, 13(8):1439-1449.
    [33] JEONG I H, KIM K H, PARK J S. Analysis of bacterial diversity in sponges collected off Chujado,an Island in Korea, using barcoded 454 pyrosequencing:Analysis of a distinctive sponge group containing Chloroflexi[J]. Journal of Microbiology,2013, 51(5):570-577.
    [34] ZHANG J, GUO Z, XUE Z, et al. A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnic ities[J]. The ISME Journal, 2015, 9(9):1979-1990.
    [35] WU G D, CHEN J, HOFFMANN C, et al. Linking Long-Term dietary patterns with gut microbial enterotypes[J]. Science, 2011, 333(6052):105-108.
    [36] FILHO W S S, CASARIN R C V, JUNIOR E L N, et al. Microbial diversity similarities in periodontal pockets and atheromatous plaques of cardiovascular disease patients[J]. PLoS One, 2014, 9(10):e109761.
    [37] GARRITY G M, BELL J A, LILBURN T G.Bergey’s Manual of Systematic Bacteriology[M]. New York:Springer, 2004:151-159, 308-324.
    [38] BIDDLE A, STEWART L, BLANCHARD J, et al.Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities[J]. Diversity, 2013, 5(3):627-640.
    [39] LECOMTE V, KAAKOUSH N O, MALONEY C A,et al. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters[J]. PLoS One, 2015, 10(5):e0126931.
    [40] YANG J Y, BINDELS L B, MUNOZ R R S, et al. Disparate metabolic responses in mice fed a high-fat diet supplemented with maize-derived nondigestible feruloylated oligo-and polysaccharides are linked to changes in the gut microbiota[J]. PLoS One, 2016, 11(1):e0146144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700