用户名: 密码: 验证码:
N,N-二乙基丙烯酰胺与N,N-二甲基丙烯酰胺嵌段共聚物的可控合成及温敏性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Precise Synthesis and Thermoresponsive Property of Block Copolymers Consisting of N,N-diethylacrylamide and N,N-dimethylacrylamide
  • 作者:张子路 ; 徐亮 ; 臧春雨 ; Kakuchi ; Toyoji ; 沈贤德
  • 英文作者:Zi-lu Zhang;Liang Xu;Chun-yu Zang;Kakuchi Toyoji;Xian-de Shen;College of Chemical and Environmental Engineering,Changchun University of Science and Technology;College of Material Science and Engineering,Changchun University of Science and Technology;
  • 关键词:温敏性 ; 嵌段共聚物 ; N ; N-二乙基丙烯酰胺 ; N ; N-二甲基丙烯酰胺 ; 浊点温度
  • 英文关键词:Termoresponeive property;;Block acrylamide copolymer;;Poly(N,N-diethylacrylamide);;Poly(N,N-dimethylacrylamide);;Temperature of cloud point
  • 中文刊名:GFXB
  • 英文刊名:Acta Polymerica Sinica
  • 机构:长春理工大学化学与环境工程学院;长春理工大学材料科学与工程学院;
  • 出版日期:2019-01-26 09:51
  • 出版单位:高分子学报
  • 年:2019
  • 期:v.50
  • 基金:国家外专千人计划(项目号WQ20142200201)资助项目
  • 语种:中文;
  • 页:GFXB201904008
  • 页数:9
  • CN:04
  • ISSN:11-1857/O6
  • 分类号:66-74
摘要
采用B(C6F5)3催化的基团转移聚合(GTP)法,精确合成了聚(N,N-二乙基丙烯酰胺)(PDEAAm)与聚(N,N-二甲基丙烯酰胺)(PDMAAm)的均聚物及无规、二嵌段、三嵌段和五嵌段共聚物.共聚物的聚合度均约为100,分散性指数在1.19~1.26之间.利用可控温紫外可见光谱仪(UV-Vis)测定聚合物水溶液的浊点温度(Tcp),通过Tcp分析与线-球相变有关的温敏性能,利用变温核磁(NMR)及动态光散射粒度仪(DLS)测定聚合物在水溶液中的相变行为.结果表明,对于无规共聚物,随着DMAAm比例增加,Tcp从38.5°C增加到68.0°C,当DMAAm比例> 75%时,没有观察到相转变现象.对于二嵌段共聚物,随着DMAAm比例的增加,Tcp从34.5°C增加到44.5°C,并且当PDEAAm和PDMAAm链段比例为10/90时共聚物没有相转变现象.对于三嵌段和五嵌段共聚物,只有两端为PDEAAm链段的共聚物表现出相转变现象,三嵌段和五嵌段共聚物的Tcp分别为51.5和55.0°C.
        The thermoresponsive property of poly(N,N-diethylacrylamide)(PDEAAm) and its copolymer with N,N-dimethylacrylamide(DMAAm) has been studied using various types of the copolymers. The group transfer polymerization(GTP) of N,N-diethylacrylamide(DEAAm) and N,N-dimethylacrylamide(DMAAm) was carried out using tris(pentafluorophenyl borane(B(C6 F5)3) as the organocatalyst and triethyl((1-methoxy-2-methylprop-1-en-1-yl)o-xy)silane(SKAEt) as the initiator to produce the random, di-, tri-, and penta-block copolymers along with the homopolymers of PDEAAm and PDMAAm. The polymerization degrees(PDs) of homopolymers were25, 50, 100, 200, 300, and 500 for PDEAAm, 25, 50, and 100 for PDMAAm and those of all copolymers was 100,and their dispersity was in the range of 1.05–1.26. The monomer compositions(m/n) in the copolymers were90/10, 75/25, 70/30, 65/35, 60/40, 55/45, 50/50, 25/75, and 10/90 for the random copolymer of PDEAAmm-rPDMAAmn and 90/10, 75/25, 50/50, 25/75, and 10/90 for the di-block copolymer of PDEAAmm-b-PDMAAmn.The monomer compositions in the tri-block copolymer were PDEAAm25-b-PDMAAm50-b-PDEAAm25 and PDMAAm25-b-PDEAAm50-b-PDMAAm25, and those in the penta-block copolymer were PDEAAm20-bPDMAAm25-b-PDEAAm50-b-PDMAAm25-b-PDEAAm20 and PDMAAm20-b-PDEAAm20-b-PDMAAm20-bPDEAAm20-b-PDMAAm20. The thermoresponsive property concerning with a coil-globule phase transition was estimated using the temperature of cloud point(Tcp) of aqueous polymer solutions, i.e., the lower critical solution temperature(LCST). The Tcp of PDEAAm increased with the increasing PD from 36.5 °C to 29.5 °C. For PDEAAmm-r-PDMAAmn, the Tcp increased with the increasing DMAAm unit from 38.5 °C to 68.0 °C and none of the Tcps was observed for the copolymers with the m/n ratios of 25/75 and 10/90. For PDEAAmm-bPDMAAmn, the Tcp increased with the increasing segment length of PDMAAm from 34.5 °C to 44.5 °C and no phase transition was observed for PDEAAm10-b-PDMAAm90. For the tri-and penta-block copolymers, which consist of the PDMAAm segment at both copolymer ends, PDEAAm25-b-PDMAAm50-b-PDEAAm25 and PDEAAm20-b-PDMAAm25-b-PDEAAm50-b-PDMAAm25-b-PDEAAm20 only exhibited the phase transition, such as the Tcps of 51.5 and 55.0 °C, respectively. These phase transition behaviors were confirmed by nuclear magnetic resonance spectroscopy(NMR) and dynamic light scattering(DLS) measurements. The hydrodynamic radius(Rh) of PDEAAm25-b-PDMAAm50-b-PDEAAm25 and PDEAAm20-b-PDMAAm20-b-PDEAAm20-bPDMAAm20-b-PDEAAm20 surged from lower temperature of 45 °C to higher temperature of 75 °C.
引文
1Liu F,Urban M W.Prog Polym Sci,2010,35(1-2):3-23
    2Gil E,Hudson S.Prog Polym Sci,2004,29(12):1173-1222
    3Mura S,Nicolas J,Couvreur P.Nat Mater,2013,12(991):991-1003
    4Roth P J,Lowe A B.Polym Chem,2017,8(1):10-11
    5Scarpa J S,Mueller D D,Klotz I M.J Am Chem Soc,1967,89(24):6024-6030
    6Crespy D,Rossi R M.Polym Int,2007,56(12):1461-1468
    7Liu R,Fraylich M,Saunders B R.Colloid Polym Sci,2009,287(6):627-643
    8Hocine S,Li M H.Soft Matter,2013,9(25):5839-5861
    9Saeki S,Kuwahara N,Nakata M,Kaneko M.Polymer,1976,17(8):685-689
    10Wei H,Cheng S X,Zhang X Z,Zhuo R X.Prog Polym Sci,2009,34(9):893-910
    11Schild H G.Prog Polym Sci,1992,17(2):163-249
    12Plamper F A,Ruppel M,Schmalz A,Borisov O,Ballauff M,Müller A H E.Macromolecules,2007,40(23):8361-8366
    13Plamper F A,Ballauff M,Müller A H E.J Am Chem Soc,2007,129(47):14538-14539
    14Meeussen F,Nies E,Berghmans H,Verbrugghe S,Goethals E,Du Prez F.Polymer,2000,41(24):8597-8602
    15Salzinger S,Seemann U B,Plikhta A,Rieger B.Macromolecules,2011,44(15):5920-5927
    16Vancoillie G,Frank D,Hoogenboom R.Prog Polym Sci,2014,39(6):1074-1095
    17Xia Y,Yin X,Burke N A D,St?ver H D H.Macromolecules,2005,38(14):5937-5943
    18Zhang Y,Furyk S,Bergbreiter D E,Cremer P S.J Am Chem Soc,2005,127(41):14505-14510
    19Kikuchi S,Chen Y,Kitano K,Takada K,Satoh T,Kakuchi T.Polym Chem,2015,6(38):6845-6856
    20Hasegawa A,Naganawa Y,Fushimi M,Ishihara K,Yamamoto H.Org Lett,2006,8(15):3175-3178
    21Lessard D G,Ousalem M,Zhu X X.Can J Chem,2001,79(12):1870-1874
    22Huber S,Jordan R.Colloid Polym Sci,2007,286(4):395-402
    23Sakai N,Jin M,Sato S I,Satoh T,Kakuchi T.Polym Chem,2014,5(3):1057-1062
    24Tao X,Deng Y,Shen Z,Ling J.Macromolecules,2014,47(18):6173-6180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700