用户名: 密码: 验证码:
大面积银微纳光栅的制备及其表面等离子体共振传感特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of large-area silver micro-nano grating and study on its surface plasmon resonance sensing property
  • 作者:陈志伟 ; 郎咸忠 ; 唐斌 ; 朱熠奇 ; 吴钦 ; 蒋美萍
  • 英文作者:CHEN Zhi-wei;LANG Xian-zhong;TANG Bin;ZHU Yi-qi;WU Qin;JIANG Mei-ping;School of Mathematics and Physics, Changzhou University;
  • 关键词:聚碳酸酯 ; ; 磁控溅射 ; 光栅 ; 表面等离子体共振 ; 时域有限差分法 ; 蔗糖 ; 折射率传感
  • 英文关键词:polycarbonate;;silver;;magnetron sputtering;;grating;;surface plasmon resonance;;finite-difference time-domain method;;sucrose;;refractive index sensing
  • 中文刊名:DDTL
  • 英文刊名:Electroplating & Finishing
  • 机构:常州大学数理学院;常州一中物理部;
  • 出版日期:2019-04-15
  • 出版单位:电镀与涂饰
  • 年:2019
  • 期:v.38;No.337
  • 基金:国家自然科学基金青年基金项目(51501018);; 江苏省自然科学基金青年基金项目(BK20150267);江苏省自然科学基金青年基金项目(BK20150267);; 江苏省高等学校自然科学研究面上项目合同(18KJB430003);; 常州大学信息数理学院教育教学研究课题(2017XSJY06)
  • 语种:中文;
  • 页:DDTL201907005
  • 页数:6
  • CN:07
  • ISSN:44-1237/TS
  • 分类号:26-31
摘要
提出了一种基于普通CD-R光盘聚碳酸酯层表面磁控溅射镀银的简便纳米制备技术,用以大面积制备一维银微纳光栅,该光栅可作为高灵敏、低成本的表面等离激元共振(SPR)传感器。通过实验测量和数值计算的方法研究了银层厚度对银微纳光栅SPR的影响。结果发现,银层厚度为108 nm的银微纳光栅具有最优的综合传感性能,其灵敏度和品质因数分别达到490 nm/RIU和22 RIU~(-1)。该技术在化学生物传感器制备方面具有潜在的应用价值。
        A facile nanotechnology was developed for fabrication of large-area one-dimensional silver micro-nano grating by magnetron sputtering of silver on the polycarbonate layer of ordinary CD-R(compact disc-recordable) as high-sensitivity and cost-efficient surface plasmon resonance(SPR) sensor. The effect of silver thickness on the plasmonic sensing performance was studied by experimental measurement and numerical calculation. It was found that the silver micro-nano grating with a silver layer thickness of 108 nm had the best integrated sensing performance. Its sensitivity and figure of merit reached 490 nm/RIU and 22 RIU~(-1), respectively. The method shows a great potential application in the preparation of chemoand biosensors.
引文
[1]HOMOLA J,YEE S S,GAUGLITZ G.Surface plasmon resonance sensors:review[J].Sensors and Actuators B:Chemical,1999,54(1/2):3-15.
    [2]WILLETS K A,VAN DUYNE R P.Localized surface plasmon resonance spectroscopy and sensing[J].Annual Review of Physical Chemistry,2007,58:267-297.
    [3]STEWART M E,ANDERTON C R,THOMPSON L B,et al.Nanostructured plasmonic sensors[J].Chemical Reviews,2008,108(2):494-521.
    [4]GAO S Y,KOSHIZAKI N,TOKUHISA H,et al.Highly stable Au nanoparticles with tunable spacing and their potential application in surface plasmon resonance biosensors[J].Advanced Functional Materials,2010,20(1):78-86.
    [5]GAO Y K,XIN Z M,ZENG B B,et al.Plasmonic interferometric sensor arrays for high-performance label-free biomolecular detection[J].Lab on a Chip,2013,13(24):4755-4764.
    [6]IQBAL T,AFSHEEN S.One dimensional plasmonic grating:high sensitive biosensor[J].Plasmonics,2017,12(1):19-25.
    [7]CAO J J,SUN Y,ZHU H X,et al.Plasmon-enhanced optical transmission at multiple wavelengths through an asymmetric corrugated thin silver film[J].Plasmonics,2018,13(5):1549-1554.
    [8]LEE S W,LEE K S,AHN J Y,et al.Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography[J].ACS Nano,2011,5(2):897-904.
    [9]YU C C,HO K H,CHEN H L,et al.Using the nanoimprint-in-metal method to prepare corrugated metal structures for plasmonic biosensors through both surface plasmon resonance and index-matching effects[J].Biosensors and Bioelectronics,2012,33(1):267-273.
    [10]MISHRA A K,MISHRA S K,GUPTA B D.SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region[J].Optics Communications,2015,344:86-91.
    [11]XIAO B,PRADHAN S K,SANTIAGO K C,et al.Topographically engineered large scale nanostructures for plasmonic biosensing[J].Scientific Reports,2016,6:24385.
    [12]BAQUEDANO E,GONZáLEZ M U,PANIAGUA-DOMíNGUEZ R,et al.Low-cost and large-size nanoplasmonic sensor based on Fano resonances with fast response and high sensitivity[J].Optics Express,2017,25(14):15967-15976.
    [13]HALL A S,FRIESEN S A,MALLOUK T E.Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography[J].Nano Letters,2013,13(6):2623-2627.
    [14]STELLING C,FOSSATI S,DOSTALEK J,et al.Surface plasmon modes of nanomesh-on-mirror nanocavities prepared by nanosphere lithography[J].Nanoscale,2018,10(37):17983-17989.
    [15]PALIK E D.Handbook of Optical Constants of Solids[M].San Diego:Academic Press,Inc.,1985.
    [16]SHERRY L J,CHANG S H,SCHATZ G C,et al.Localized surface plasmon resonance spectroscopy of single silver nanocubes[J].Nano Letters,2005,5(10):2034-2038.
    [17]FAROOQ S,DE ARAUJO R E.Engineering a localized surface plasmon resonance platform for molecular biosensing[J].Open Journal of Applied Sciences,2018,8(3):126-139.
    [18]MORENO-SERENO M,PéREZ N,DOMENECH-GIL G,et al.Laser interferometry for broad area SPR-grating couplers in chemical applications[J].Proceedings,2017,1(4):323.
    [19]ZHANG L,Li X M,WANG Y Y,et al.Plasmonic Al nanopyramid array sensor for monitoring the attaching and spreading of cells[J].Sensors and Actuators B:Chemical,2019,279:503-508.
    [20]ZHANG Y N,ZHANG L B,HAN B,et al.Reflective mercury ion and temperature sensor based on a functionalized no-core fiber combined with a fiber Bragg grating[J].Sensors and Actuators B:Chemical,2018,272:331-339.
    [21]HONG Y S,CHO C H,SUNG H K.Design parameter optimization of a silicon-based grating waveguide for performance improvement in biochemical sensor application[J].Sensors,2018,18(3):781.
    [22]SINIBALDI A,DANZ N,DESCROVI E,et al.Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors[J].Sensors and Actuators B:Chemical,2012,174:292-298.
    [23]张志伟,尹卫峰,温廷敦,等.溶液浓度与其折射率关系的理论和实验研究[J].中北大学学报(自然科学版),2009,30(3):281-285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700