用户名: 密码: 验证码:
翅碱蓬响应高盐胁迫的分子机制研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the molecular mechanisms of Suaeda heteroptera in response to high salt stress
  • 作者:谢欠影 ; 曹晟阳 ; 赵晨阳 ; 伊凯 ; 戴峰 ; 秦会发 ; 秦玉雪 ; 方蕾
  • 英文作者:XIE Qian-ying;CAO Sheng-yang;ZHAO Chen-yang;YI Kai;DAI Feng;QIN Hui-fa;QIN Yu-xue;FANG Lei;College of Marine Science and Environment, Dalian Ocean University;Panjin Red Beach Tourism Development Limited Corporation;
  • 关键词:翅碱蓬 ; 高盐胁迫 ; 比较转录组学 ; 分子机制 ; 代谢通路
  • 英文关键词:Suaeda heteroptera;;high salt stress;;comparative transcriptomics;;molecular mechanism;;metabolic pathway
  • 中文刊名:DLSC
  • 英文刊名:Journal of Dalian Ocean University
  • 机构:大连海洋大学海洋科技与环境学院;盘锦红海滩旅游发展有限公司;
  • 出版日期:2019-03-27 09:12
  • 出版单位:大连海洋大学学报
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金资助项目(41606133);; 辽宁省高等学校科学研究项目(QL201706);; 国家海洋局近岸海域生态环境重点实验室2016年度开放基金资助项目(201601)
  • 语种:中文;
  • 页:DLSC201902002
  • 页数:8
  • CN:02
  • ISSN:21-1575/S
  • 分类号:11-18
摘要
为研究翅碱蓬Suaeda heteroptera响应高盐胁迫的分子机制,试验将翅碱蓬植株在高盐胁迫(856 mmol/L NaCl)和无盐(0 mmol/L NaCl)条件下处理2 h后,对植株分别进行全转录组测序。结果表明:通过RNA-seq分析共获得转录本147 176个,拼接后获得单基因(Unigene)84 545个;比较转录组学分析显示,与无胁迫组(对照)相比,高盐胁迫下翅碱蓬共检出144个差异表达基因,其中发生表达上调的有55个,发生表达下调的有89个;GO富集分析显示,差异表达基因主要分布在次生代谢、信号转导、光合作用电子传递等途径;KEGG富集分析显示,差异表达基因涉及的代谢通路有14个;对差异表达基因发生富集的5个主要代谢通路(光合作用、蔗糖与海藻糖代谢、植物激素信号转导、苯丙基类生物合成、半胱氨酸与甲硫氨酸代谢)进行了详细阐述,从分子水平探讨了翅碱蓬响应高盐胁迫的机制。本研究结果可为更深入研究翅碱蓬耐盐分子机制、挖掘耐盐关键基因提供数据资料。
        In order to study the molecular mechanisms of Suaeda heteroptera in response to high salt stress, the plants were divided into two groups, the salt stress group(856 mmol/L NaCl) and the control group(0 mmol/L NaCl). For each group, total RNA was isolated after 2 h treatment and subject to comparative transcriptomic analysis. In total, 147 176 transcripts were obtained from RNA-seq and 84 545 unigenes were obtained after splicing. The results showed that 144 differentially expressed genes(DEGs) were detected in Suaeda heteroptera under high salt stress, of which 55 were up-regulated and 89 were down-regulated. GO enrichment analysis showed that these DEGs were mainly distributed in secondary metabolism, signal transduction, photosynthesis electron transport and other pathways. KEGG enrichment analysis of DEGs showed that there were 14 metabolic pathways involved. Five main metabolic pathways of DEGs enrichment were discussed in detail, including photosynthesis, sucrose and trehalose metabolism, plant hormone signal transduction, phenylpropyl biosynthesis, cysteine and methionine metabolism. The molecular mechanisms of Suaeda heteroptera to high salt stress were discussed. This study could provide data for further the study of salt tolerance in Suaeda heteroptera and relevant genes identification.
引文
[1] 中国科学院中国植物志编辑委员会.中国植物志:第25卷[M].北京:科学出版社,1979:115-135.
    [2] 刘彧,丁同楼,王宝山.不同自然盐渍生境下盐地碱蓬叶片肉质化研究[J].山东师范大学学报:自然科学版,2006,21(2):102-104.
    [3] 张立宾,徐化凌,赵庚星.碱蓬的耐盐能力及其对滨海盐渍土的改良效果[J].土壤,2007,39(2):310-313.
    [4] Deinlein U,Stephan A B,Horie T,et al.Plant salt-tolerance mechanisms[J].Trends in Plant Science,2014,19(6):371-379.
    [5] 何洁,陈旭,王晓庆,等.翅碱蓬对滩涂湿地沉积物中重金属Cu、Pb的累积吸收[J].大连海洋大学学报,2012,27(6):539-545.
    [6] 何洁,何晓彤,刘远,等.丁草胺和马拉硫磷对翅碱蓬生长及抗氧化酶系统的影响[J].大连海洋大学学报,2016,31(5):551-558.
    [7] Jin Hangxia,Dong Dekun,Yang Qinghua,et al.Salt-responsive transcriptome profiling of Suaeda glauca via RNA sequencing[J].PLoS One,2016,11(3):e0150504.
    [8] Garg R,Verma M,Agrawal S,et al.Deep transcriptome sequencing of wild halophyte rice,Porteresia coarctata,provides novel insights into the salinity and submergence tolerance factors[J].DNA Research,2014,21(1):69-84.
    [9] Diray-Arce J,Clement M,Gul B,et al.Transcriptome assembly,profiling and differential gene expression analysis of the halophyte Suaeda fruticosa provides insights into salt tolerance[J].BMC Genomics,2015,16:353.
    [10] Nadtochenko V A,Semenov A Y,Shuvalov V A.Formation and decay of P680 (PD1-PD2)+PheoD1- radical ion pair in photosystem II core complexes[J].Biochimica et BiophysicaActa(BBA)- Bioenergetics,2014,1837(9):1384-1388.
    [11] Nelson N,Yocum C F.Structure and function of photosystems I AND II[J].Annual Review of Plant Biology,2006,57:521-565.
    [12] Petersen J,Dekker J P,Bowlby N R,et al.EPR characterization of the CP47-D1-D2-cytochrome b-559 complex of photosystem II[J].Biochemistry,1990,29(13):3226-3231.
    [13] Philbrick J B,Diner B A,Zilinskas B A.Construction and characterization of cyanobacterial mutants lacking the manganese-stabilizing polypeptide of photosystem II[J].Journal of Biological Chemistry,1991,266(20):13370-13376.
    [14] Komenda J,Masojídek J.Functional and structural changes of the photosystem II complex induced by high irradiance in cyanobacterial cells[J].FEBS Journal,1995,233(2):677-682.
    [15] Putnam-Evans C,Bricker T M.Site-directed mutagenesis of the CPa-1 protein of photosystem II:alteration of the basic residue pair 384,385R to 384,385G leads to a defect associated with the oxygen-evolving complex[J].Biochemistry,1992,31(46):11482-11488.
    [16] Ponnu J,Wahl V,Schmid M.Trehalose-6-phosphate:connecting plant metabolism and development[J].Frontiers in Plant Science,2011,2:70.
    [17] 葛宇,袁勤生.海藻糖对生物活性物质的保护作用机理研究进展[J].药物生物技术,2002,9(5):297-300.
    [18] Goddijn O J,Van Dun K.Trehalose metabolism in plants[J].Trends in Plant Science,1999,4(8):315-319.
    [19] Rosário M M,Noleto G R,Bento J F,et al.Effect of storage xyloglucans on peritoneal macrophages[J].Phytochemistry,2008,69(2):464-472.
    [20] Li Wenbo,Guan Qingmei,Wang Zhenyu,et al.A bi-functional xyloglucan galactosyltransferase is an indispensable salt stress tolerance determinant in Arabidopsis[J].Molecular Plant,2013,6(4):1344-1354.
    [21] Wang K L,Li Hai,Ecker J R.Ethylene biosynthesis and signaling networks[J].The Plant Cell,2002,14(S1):S131-S151.
    [22] Potuschak T,Lechner E,Parmentier Y,et al.EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins:EBF1 and EBF2[J].Cell,2003,115(6):679-689.
    [23] Binder B M,Walker J M,Gagne J M,et al.The Arabidopsis EIN3 binding F-Box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling[J].The Plant Cell,2007,19(2):509-523.
    [24] Gill S S,Tuteja N.Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J].Plant Physiology and Biochemistry,2010,48(12):909-930.
    [25] 孙静,王宪泽.盐胁迫对小麦过氧化物酶同工酶基因表达的影响[J].麦类作物学报,2006,26(1):42-44,61.
    [26] Ar?kan B,?zden S,Turgut-Kara N.DNA methylation related gene expression and morphophysiological response to abiotic stresses in Arabidopsis thaliana[J].Environmental and Experimental Botany,2018,149:17-26.
    [27] 潘雅姣,傅彬英,王迪,等.水稻干旱胁迫诱导DNA甲基化时空变化特征分析[J].中国农业科学,2009,42(9):3009-3018.
    [28] Muchate N S,Nikalje G C,Rajurkar N S,et al.Plant salt stress:adaptive responses,tolerance mechanism and bioengineering for salt tolerance[J].The Botanical Review,2016,82(4):371-406.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700