用户名: 密码: 验证码:
L-半胱氨酸和胱胺共自组装膜活体检测抗坏血酸(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cysteine and Cystamine Co-Self-Assembled Monolayers for in Vivo Detection of Ascorbic Acid
  • 作者:张悦 ; 冯涛涛 ; 纪文亮 ; 张美宁
  • 英文作者:ZHANG Yue;FENG Tao-tao;JI Wen-liang;ZHANG Mei-ning;Department of Chemistry, Renmin University of China;
  • 关键词:L-半胱氨酸和胱胺 ; 共自组装膜 ; 抗坏血酸 ; 抗吸附 ; 活体
  • 英文关键词:cysteine and cystamine;;co-self-assembled monolayer;;ascorbic acid;;anti-adsorption;;in vivo
  • 中文刊名:DHXX
  • 英文刊名:Journal of Electrochemistry
  • 机构:中国人民大学化学系;
  • 出版日期:2019-06-28
  • 出版单位:电化学
  • 年:2019
  • 期:v.25;No.113
  • 基金:the financial supports from the National Natural Science Foundation of China (Grant No.21874152);; Renmin University of China
  • 语种:英文;
  • 页:DHXX201903011
  • 页数:9
  • CN:03
  • ISSN:35-1172/O6
  • 分类号:113-121
摘要
自组装单分子膜(SAM)由于其独特的物理化学性质近年来受到了极大的关注. SAM通过金硫键在电极表面形成高度有序的单分子膜,该稳定的分子膜不仅可以调节表面的亲疏水性质,而且可以促进电极表面氧化还原活性分子的反应速率.本论文提出了一种简单有效的方法,在金微电极上构建半胱氨酸和胱胺共自组装单分子膜用于活体内抗坏血酸的检测.研究发现,当混合单分子层中半胱氨酸和胱胺的摩尔比为1:1时,可以在低电位下(约为0.10 V)显著增强抗坏血酸氧化的电子转移动力学,同时该膜能在一定程度上抵抗蛋白质在电极表面的非特异性吸附.将共自组装单分子膜应用到活体检测中,作者检测到鼠纹状体中抗坏血酸的基准值为257±30μmol·L-1(n=3).本论文为活体电化学检测提供了一种简单、有效的方法.
        Self-assembled monolayers(SAMs), which form highly ordered monolayers on the electrode surface through the gold-suffer bond, have attracted much attention in recent years. This stable layer not only can regulate the wettable properties of surface, but also can act as a promoter towards redox-active molecules. Here, we developed a simple and effective method to construct cysteine and cystamine co-self-assembled monolayer on gold microelectrode for in vivo detection of ascorbic acid(AA). The molar ratio at 1:1 of mixed monolayer has been found the optimum to enhance the electron-transfer kinetics of AA oxidation at low potential(ca. 0.10 V), meanwhile, it could resist the non-specific adsorption of protein at electrode surface. The application of the co-self-assembled monolayer is preliminarily demonstrated for in vivo detection and the basal level of striatum AA was determined to be 257 ± 30 μmol·L-1(n = 3). This study offers a general and effective approach for in vivo electrochemistry with high reliability and simplified procedures.
引文
[1]Ulman A.Wetting studies of molecularly engineered surfaces[J].Thin Solid Films,1996,273(1/2):48-53.
    [2]Cook K M,Nissley D A,Ferguson G S.Spatially selective formation of hydrocarbon,fluorocarbon,and hydroxyl-terminated monolayers on a microelectrode array[J].Langmuir,2013,29(23):6779-6783.
    [3]Chaki N K,Vijayamohanan K.Self-assembled monolayers as a tunable platform for biosensor applications[J].Biosensors and Bioelectronics,2002,17(1/2):1-12.
    [4]Tencer M,Olivieri A,Tezel B,et al.Chip-scale electrochemical differentiation of SAM-coated gold features using a probe array[J].Journal of The Electrochemical Society,2012,159(3):J77-J82.
    [5]Whitesides G M,Ostuni E,Takayama S,et al.Soft lithography in biology and biochemistry[J].Annual Review of Biomedical Engineering,2001,3(1):335-373.
    [6]Gon觭alves I C,Martins M C L,Barbosa M A,et al.Protein adsorption on 18-alkyl chains immobilized on hydroxyl-terminated self-assembled monolayers[J].Biomaterials,2005,26(18):3891-3899.
    [7]Besharat Z,Wakeham D,Johnson C M,et al.Mixed monolayers of alkane thiols with polar terminal group on gold:Investigation of structure dependent surface properties[J].Journal of Colloid and Interface Science,2016,484:279-290.
    [8]Yang W,Gooding J J,Hibbert D B.Characterisation of gold electrodes modified with self-assembled monolayers of L-cysteine for the adsorptive stripping analysis of copper[J].Journal of Electroanalytical Chemistry,2001,516(1/2):10-16.
    [9]Zhang H M,Li N Q.The direct electrochemistry of myoglobin at a DL-homocysteine self-assembled gold electrode[J].Bioelectrochemistry,2001,53(1):97-101.
    [10]Meng X Y,Wu X Q,Wang Z S,et al.The electrochemical and spectroelectrochemical behaviors of SOD at cysteine modified gold electrode[J].Bioelectrochemistry,2001,54(2):125-129.
    [11]Hoshi T,Anzai J,Osa T.Electrochemical deposition of avidin on the surface of a platinum electrode for enzyme sensor applications[J].Analytica Chimica Acta,1994,289(3):321-327.
    [12]F覿gerstam L G,Frostell-Karlsson A,Karlsson R,et al.Biospecific interaction analysis using surface plasmon resonance detection applied to kinetic,binding site and concentration analysis[J].Journal of Chromatography A,1992,597(1/2):397-410.
    [13]Sugawara T,Matsuda T.Development of a novel protein fixation method with micron-order precision[J].Langmuir,1995,11(6):2267-2271.
    [14]Xiao T F,Wu F,Hao J,et al.In vivo analysis with electrochemical sensors and biosensors[J].Analytical Chemistry,2016,89(1):300-313.
    [15]Ding C Q,Zhu A W,Tian Y.Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging[J].Accounts of Chemical Research,2013,47(1):20-30.
    [16]Zhou L,Ding H,Yan F,et al.Electrochemical detection of Alzheimer’s disease related substances in biofluids by silica nanochannel membrane modified glassy carbon electrodes[J].Analyst,2018,143(19):4756-4763.
    [17]Guan L H(关利浩),Wang C(王超),Zhang W(张望),et al.A facile strategy for two-step fabrication of gold nanoelectrode for in vivo dopamine detection[J].Journal of Electrochemistry(电化学),2019,25(2):244-251.
    [18]Saleh F S,Okajima T,Mao L Q(毛兰群),et al.Development of dehydrogenase-based bioanode using poly(phenosafranin)-functionalized SWCNT nanocomposites and its application to ethanol biosensor[J].Journal of Electrochemistry(电化学),2011,17(3):263-270.
    [19]Zhang Z P,Lin Y Q,Mao L Q.On-line electrochemical measurements of cerebral hypoxanthine of freely moving rats[J].Science in China Series B:Chemistry,2009,52(10):1677-1682.
    [20]Zhang M N,Liu K,Gong K P,et al.Continuous on-line monitoring of extracellular ascorbate depletion in the rat striatum induced by global ischemia with carbon nanotube-modified glassy carbon electrode integrated into a thin-layer radial flow cell[J].Analytical Chemistry,2005,77(19):6234-6242.
    [21]Cheng H J,Li L J,Zhang M N,et al.Recent advances on in vivo analysis of ascorbic acid in brain functions[J].Tr ACTrends in Analytical Chemistry,2018,109:247-259.
    [22]Wu F,Cheng H J,Wei H,et al.Galvanic redox potentiometry for self-driven in vivo measurement of neurochemical dynamics at open-circuit potential[J].Analytical Chemistry,2018,90(21):13021-13029.
    [23]Liu X M,Zhang M N,Xiao T F,et al.Protein pretreatment of microelectrodes enables in vivo electrochemical measurements with easy precalibration and interference-free from proteins[J].Analytical Chemistry,2016,88(14):7238-7244.
    [24]Liu X M,Xiao T F,Wu F,et al.Ultrathin cell-membranemimic phosphorylcholine polymer film coating enables large improvements for in vivo electrochemical detection[J].Angewandte Chemie International Edition,2017,56(39):11802-11806.
    [25]Ostuni E,Chapman R G,Holmlin R E,et al.A survey of structure-property relationships of surfaces that resist the adsorption of protein[J].Langmuir,2001,17(18):5605-5620.
    [26]Lin P,Ding L,Lin C W,et al.Nonfouling property of zwitterionic cysteine surface[J].Langmuir,2014,30(22):6497-6507.
    [27]Ostuni E,Chapman R G,Holmlin R E,et al.A survey of structure-property relationships of surfaces that resist the adsorption of protein[J].Langmuir,2001,17(18):5605-5620.
    [28]Xiang L,Yu P,Zhang M N,et al.Platinized aligned carbon nanotube-sheathed carbon fiber microelectrodes for in vivo amperometric monitoring of oxygen[J].Analytical Chemistry,2014,86(10):5017-5023.
    [29]Zhang M N,Liu K,Xiang L,et al.Carbon nanotube-modified carbon fiber microelectrodes for in vivo voltammetric measurement of ascorbic acid in rat brain[J].Analytical chemistry,2007,79(17):6559-6565.
    [30]Raj C R,Tokuda K,Ohsaka T.Electroanalytical applications of cationic self-assembled monolayers:square-wave voltammetric determination of dopamine and ascorbate[J].Bioelectrochemistry,2001,53(2):183-191.
    [31]Molinero V,Calvo E J.Electrostatic interactions at self assembled molecular films of charged thiols on gold[J].Journal of Electroanalytical Chemistry,1998,445(1/2):17-25.
    [32]Cheng C A,Brajter-Toth A.Permselectivity and high sensitivity at ultrathin monolayers.Effect of film hydrophobicity[J].Analytical Chemistry,1995,67(17):2767-2775.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700