用户名: 密码: 验证码:
介质阻挡低温等离子处理对花生蛋白持水性及溶解性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of dielectric barrier discharge cold plasma treatment on solubility and water holding capacity of peanut protein
  • 作者:季慧 ; 于娇 ; 张金 ; 魏瑞 ; 李书红 ; 陈野
  • 英文作者:Ji Hui;Yu Jiaojiao;Zhang Jin;Wei Rui;Li Shuhong;Chen Ye;Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education;College of Life Science and Biotechnology, Linyi University;
  • 关键词:蛋白 ; 等离子 ; 结构 ; 低温等离子 ; 花生蛋白 ; 功能性质
  • 英文关键词:proteins;;plasma;;structure;;cold plasma;;peanut protein;;functional properties
  • 中文刊名:NYGU
  • 英文刊名:Transactions of the Chinese Society of Agricultural Engineering
  • 机构:天津科技大学食品工程与生物技术学院教育部食品营养与安全实验室;临沂大学生命科学学院;
  • 出版日期:2019-02-23
  • 出版单位:农业工程学报
  • 年:2019
  • 期:v.35;No.356
  • 基金:国家自然科学基金资助项目(31701526,31501503)
  • 语种:中文;
  • 页:NYGU201904037
  • 页数:6
  • CN:04
  • ISSN:11-2047/S
  • 分类号:307-312
摘要
花生蛋白营养丰富,但因功能性质差,导致其在食品工业应用受限。低温等离子技术作为一种新兴的、非热、无危害技术,越来越受人关注,介质阻挡放电(dielectricbarrierdischarge,DBD)等离子体技术由于具有适应频率宽,可在较大空间内获得高密度非平衡等离子体,并且工艺简单、快速高效、节能环保,是近年来蛋白质改性研究的热点之一。采用介质阻挡低温等离子体对花生蛋白溶液进行改性处理,研究等离子体处理时间对花生蛋白结构及功能特性影响。试验结果表明:低温等离子处理能显著提高花生蛋白的溶解性、持水性,低温等离子处理时间为2min时,花生蛋白溶解性和持水性达最大,与未处理样品相比分别提高了24.8%和79.6%;同时,花生蛋白乳化性、乳化稳定性、起泡性、起泡稳定性和持油性也有不同程度的提高。借助十二烷基硫酸钠-聚丙烯酰胺电泳(sodium dodecyl sulfate polyacrylamide gel electrophoresis,SDS-PAGE)、傅里叶红外光谱(Fourier transform infrared,FTIR)、表面疏水性分析低温等离子对花生蛋白结构影响。分析结果表明,低温等离子处理并未改变花生蛋白的分子量分布;低温等离子处理后,β-折叠和无规则卷曲的含量增加,α-螺旋和β-转角的含量降低,蛋白的有序结构被破坏,结构由紧密变松散;花生蛋白表面疏水性显著提高。低温等离子处理是一种改善蛋白功能性质的有效方法。
        The peanut protein, a protein-rich byproduct from oil extraction, contains 47%-55% high-quality protein, with low levels of anti-nutritional factors. It exhibits an excellent amino acid profile, a captivating aroma, and an exhilarating white color and is used as cholesterol-free commercial animal protein substitutes. However, its poor functional properties such as low solubility as well as emulsifying, foaming, and gel properties limit its applications. Therefore, improvement in the functional properties of peanut protein may be crucial to increase its application in food industry. Application of cold plasma(CP), a brand-new, nonhazardous and nonthermal, high technology with bright prospects, is currently attracting much attention. CP comprises ultraviolet photons, electrons, positive and negative ions, free radicals, and excited or non-excited molecules and atoms. In combination, these particles can break covalent bonds and initiate various chemical reactions. CP has been widely applied to clean, sterilize, and modify surfaces. Due to the advantages on broadness in frequency range, availability of the high-density non-equilibrium plasma in the larger space, simplicity in process, rapidity, efficiency, as well as other characteristics including energy-saving and environmental friendly, dielectric barrier discharge(DBD) cold plasma is considered to be the most popular plasma technology that can be applied in industry, thus becomes a major concern in the research field in modification of protein. Peanut protein solutions were modified by dielectric barrier discharge(DBD) cold plasma(CP) treatment. Effects of CP treatment on the structure and functional properties of peanut protein were evaluated by analysis of sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE), Fourier transform infrared(FTIR) and protein surface hydrophobicity index(Ho). A significant improvement in solubility and water holding capacity was found to be improved by CP, and reached a maximum value at 2 min treatment, solubility of peanut protein reaches 132.78 mg/L and water holding capacity of peanut protein is 1.93 g/g, increasing by 24.8% and 79.6% respectively compared with untreated samples. At the same time, emulsion ability, emulsion stability, foaming ability, foaming stability and oil absorbing capacity was all improved to some extent after CP treatment. The results showed that the molecular weight of peanut protein remained unaffected, meanwhile, an increase in the β-sheet and random coil content and a decrease in the α-helix and β-turn content was found, indicating that the structure of the protein changed from compact to loosen after CP treatment. The results of surface hydrophobicity indicated that CP treatment induced tertiary structural changes of the proteins, Ho of peanut protein was increased remarkably. Our study results will further broaden the application of peanut protein in food industry such as dairy, meat products, and beverages. Furthermore, the operation was easy and the treatment time was short, which may make CP as a novel effective technology for protein modification.
引文
[1]He X H,Liu H Z,Liu L,et al.Effects of high pressure on the physicochemical and functional properties of peanut protein isolates[J].Food Hydrocolloids,2014,36(5):123-129.
    [2]Zhao G,Liu Y,Zhao M,et al.Enzymatic hydrolysis and their effects on conformational and functional properties of peanut protein isolate[J].Food Chemistry,2011,127(4):1438-1443
    [3]Wu H,Wang Q,Ma T,et al.Comparative studies on the functional properties of various protein concentrate preparations of peanut protein[J].Food Research International,2009,42(3):343-348.
    [4]Ma T,Zhu H G,Ma J,et al.Influence of extraction and solubilizing treatments on the molecular structure and functional properties of peanut protein[J].LWT-Food Science and Technology,2017,79:197-204.
    [5]Ariana O R,Yazel N V,Sergio O,et al.Microwave and ultrasound to enhance protein extraction from peanut flour under alkaline conditions:Effects in yield and functional properties of protein isolates[J].Food&Bioprocess Technology,2017,10(3):1-13.
    [6]Zhang Q T,Tu Z C,Xiao H,et al.Influence of ultrasonic treatment on the structure and emulsifying properties of peanut protein isolate[J].Food and Bioproducts Processing,2014,92(1):30-37.
    [7]Kim S,Sessa D J,Lawton J W.Characterization of zein modified with a mild cross-linking agent[J].Industrial Crops&Products,2004,20(3):291-300.
    [8]Fausser C,Puma A L,Gabriel F,et al.Tokamak D-T neutron source models for different plasma physics confinement modes[J].Fusion Engineering&Design,2012,87(5/6):787-792.
    [9]Hoffmann C,Berganza C,Zhang J.Cold atmospheric plasma:Methods of production and application in dentistry and oncology[J].Medical Gas Research,2013,3(1):21-35.
    [10]Chen Y.High voltage atmospheric cold plasma treatment of refrigerated chicken eggs for control of Salmonella enteritidis on external surfaces[J].LWT-Food Science and Technology,2017,76:124-130.
    [11]Xie J,Xin D,Cao H,et al.Improving carbon fiber adhesion to polyimide with atmospheric pressure plasma treatment[J].Surface&Coatings Technology,2011,206(2):191-201.
    [12]Vasile Nastuta A,Topala I,Grigoras C,et al.Stimulation of wound healing by helium atmospheric pressure plasma treatment[J].Journal of Physics D Applied Physics,2011,44(10):162-172.
    [13]Akishev Y S,Grushin M E,Karal'Nik V B,et al Generation of a nonequlibrium plasma in heterophase atmospheric-pressure gas-liquid media and demonstration of its sterilization ability[J].Plasma Physics Reports,2006,32(12):1052-1061.
    [14]Attri,P,Arora B,Choi E H.Utility of plasma:a new road from physics to chemistry[J].Rsc Advances,2013,3(31):12540-12567.
    [15]蒲华寅.等离子体作用对淀粉结构及性质影响的研究[D].广州:华南理工大学,2013.
    [16]Misra N N,Kaur S,Tiwari B K,et al.Atmospheric pressure cold plasma(ACP)treatment of wheat flour[J].Food Hydrocolloids,2015,44:115-121.
    [17]Segat A,Misra N N,Cullen P J,et al.Atmospheric pressure cold plasma(ACP)treatment of whey protein isolate model solution[J].Innovative Food Science&Emerging Technologies,2015,29:247-254.
    [18]Dong S,Wang J M,Cheng L M,et al.Behavior of zein in aqueous ethanol under atmospheric pressure cold plasma treatment[J].Journal of Agricultural and Food Chemistry,2017,65(34):7352-7360.
    [19]邓丽莉,潘晓倩,生吉萍,等.考马斯亮蓝法测定苹果组织微量可溶性蛋白含量的条件优化[J].食品科学,2012,33(24):185-189.
    [20]王晓琳,朱力杰,陈妍婕,等.不同干热处理对花生蛋白二级结构及乳化性的影响[J].食品与发酵工业,2016,42(5):86-90.
    [21]王忠合,王军,李珍妮,等.超声波处理对豌豆分离蛋白功能特性的影响[J].食品工业科技,2015,23(15):116-120.
    [22]邵悦,张琪,张程,等.超声波对花生蛋白功能特性的影响[J].食品工业科技,2012,33(24):130-133.
    [23]Ji H,Dong S,Han F,et al.Effects of dielectric barrier discharge(DBD)cold plasma treatment on physicochemical and functional properties of peanut protein[J].Food and Bioprocess Technology,2018,11(2):344-354.
    [24]吴姣,郑为完,赵伟学,等.有限酶解米渣蛋白的乳化功能特性表征[J].食品与发酵工业,2007,33(10):23-26.
    [25]?brahim G,Demet G,Bruce B D,et al.Structural and functional changes in ultrasonicated bovine serum albumin solutions[J].Ultrasonics Sonochemistry,2007,14(2):173-183.
    [26]Cataldo F.On the action of ozone on proteins[J].Polymer Degradation&Stability,2003,82(1):105-114.
    [27]Davies M J.The oxidative environment and protein damage[J].Biochim Biophys Acta,2005,1703(2):93-109.
    [28]Segat A,Misra N N,Fabbro A,et al.Effects of ozone processing on chemical,structural and functional properties of whey protein isolate[J].Food Research International,201466:365-372.
    [29]邵俊花,吴菊清,周光宏,等.巯基和疏水性对蛋白质乳化及凝胶特性的影响[J].食品科学,2013,34(23):155-159.
    [30]刘丽,石爱民,刘红芝,等.花生蛋白亚基结构与性质研究进展[J].中国粮油学报,2016,31(10):151-156.
    [31]雷莉,赵强,范婷,等.高压微射流处理对白木通籽分离蛋白结构及流变性质的影响[J].现代食品科技,2015,31(2):145-150.
    [32]Tong P,Gao J,Chen H,et al.Effect of heat treatment on the potential allergenicity and conformational structure of egg allergen ovotransferrin[J].Food Chemistry,2012,131(2):603-610.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700